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PREFACE

As engineers have conceived and designed space missions from
Earth to other planets in the solar system, they have found it necessary
to develop new areas of technology and utilize techniques from these
areas in conjunction with classical scientific methods. For example, in
the study of the guidance of outer space vehicles, engineers are faced
with two primary problems: (1) that of determining the motion of a space
vehicle under the gravitational influence of the surrounding celestial
bodies, and (2) that of determining a method for guiding the spacecraft
such that the given mission objectives are met in the best manner. The
first of these problems can be handled with the classical methods of
celestial mechanics, but the solution to the second problem requires
concepts from the relatively new field of optimal control theory.

The results of space missions which have been performed at the time
of this writing indicate that there is a third problem in space guidance
(3),which is as important as the other two. The problem is that of guiding
a space vehicle accurately in the presence of disturbances, acting on the
spacecraft, which do not obey strict deterministic laws. The existance
of such disturbances is indicated by the inability of engineers in

predicting accurately spacecraft trajectories in past space missions.

One method of dealing with such random disturbances is to model the

behavior of a disturbance as a stochastic process, and determine the

statistics of the process by experiments made a priori to the space flight,
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The techniques of optimal control theory and celestial mechanics can then
be used along with the probabilistic concepts from the théory of stochastic
processes in order to design a space vehicle guidance procedure which
takes into account the expected effects of the disturbance process on the
spacecraft. A control procedure developed in tixis manner is called an
optimal stochastic control.

The purpose of this dissertation is to analyze the general space
guidance problem (1, 2, 3) and develop an optimal stochastic control program
for interplanetary spacecraft guidance. It is hoped that the investi-
gation is a reasonable integration of the disciplines of stochastic processes,
optimal control theory, and celestial mechanics, into one research effort.

This dissertation could not have been realized without innumerable
contributions from several persons. The author wishes to thank Dr.

B. D. Tapley of The University of Texas for supervising the research and
making many helpful suggestions regarding the manuscript preparation. He
also wishes to thank Dr. L. G. Clark, Dr. P. L. Odell, and Dr. E. J. Prouse
for serving on the dissertation committee. The author is indebted to

E. L. Davis, Jr., and E. H. Brock of the Manned Spacecraft Center for
providing an academic environment in which the numerical studies could be
performed. He is also indebted to Dr. J. M. Lewallen for his suggestions
Tegarding the numerical work. The author would like to express his
gratitude to R. D. Witty of Lockheed Electronics Company for his dedicated
assistance with the computer programs and would also like to express his
gratitude to J. Rodriquez of The University of Texas for his help with the
trajectory simulation. The author would like to thank C. G. Pfeiffer

of the Jet Propulsion Laboratory for his helpful suggestions during the

initial phases of the investigation.
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(HAPTER 1
INTRODUCTION

Preliminary Remarks

During recent years there has been a remarkable growth of interest in
problems associated with the optimal control of nonlinear dynamic systems.
A great part of the motivation toward developing techniques in control
theory lies in its important applications to space guidance theory. Since
space missions, in general, require the use of great amounts of-energy and
require long times of travel, the necessity of performing spacecraft
guidance manuvers in an optimal manner is paramount . Mbst of the effort
which has gone into the development of control theory as a tool for the
astrodynamicist has been concermed with detemministic dynamic models.

This assumption may prove to be too idealistic for reasonable applicability
of optimal control theory to space guidance problems. The purpose of this
work is to examine the effects of noise on a nonlinear dynamic system, to
extend the variational tec}miqﬁes of optiiml deterministic control theory
to the control of a étochastic dynamic system, and to apply the results

to a simulated interplanetary transfer guidance problem. The theoretical
results will be derived for a general nonlinear multidimensional dynamic
System. - In the notation used, vector quantities will be subscripted, and
repeated subscripts will imply summation umless stated otherwise.

Numerical results are obtained for the example problem by using a digital

computer.

Deterministic Control Theory

Deterministic control theory is concerned with the control of

dynamic systems whose motion is described by the set of nonlinear

1



differential equations
ii(t) = f;x,u, t) i=1,...n (1.1)

The x;(t) are components of the n dimensional state of the system
and the ui(t), i= 1,>..., m are components of the m dimensional
control, where m < n. If the control ui(t) is to be optimal, in some
sense, over some time interval, tysts te, a performance index

functional of the state and control, i.e.,

tf . .
Iful] = ffml(x’ u, t) dt ‘ (1.2)

t

0
must be extremized subject to the constraints that Equation (1.1) be
satisfied at all points in time for ty <t <te, and that the state

xi(t) be specified at t, and tf,i.e.,

x;(tg) = x5

xi(tf) = X 1.3)

The extremizatiog of the functional given in'Equation (1.2) may
be carried out by a calculus of variations technique. A formal
development of the variational method as applied to the optimal control
problem is presented in Appendix A. .

Stochastic Control 'Iheofy

Stochastic control theory is concerned with control of dynamic

systems which in some sense are random. The motion of such a system



can be described by the following set of differential equations
X (1) = £x(t), ut), n(t), t) (1.4)

where ni(t) may be a multidimensional random process which could be '
caused by one: or more of the following phenomena:

a. unknown par@tem in the dynamic model

b. umpredictable external disturbances

Cc. random noise in the controls

d. uncertainties in initial conditions.

If the control ui(t) is to be optimal, then it is desired that
the control be selected to extremize the functional given in Equation
(1.2). However, due to the presence of the noise "i(t) in the equations
of motion (1.4), the functional given in Equation (1.2) is a random
quantity, whose value depends on the particular noise function which is
manifested during the time interval ty 2t < t.. Since it is not
possible to predict the value of the functional given in Equation (1.2)
before the occ,xirrence'of the noise, a control which extremizes the
functional cannot be realized a priori. It is therefore desirable that
‘the control be selected to extremize some deterministic quantity asso-
ciated with the performance index functional. Several authors, among
them Kushner (Ref. 1), Lass (Ref. 2), Wonham (Ref. 3), and Tung (Ref. 4),
have suggested that the control be selected to extremize the 'statistic.al
average, or the expected value, of the functional given in Equation
(102) , 1.e.,

te

Ilu] = E ffn+1(x, u, t) dt (1.5)

o




where E 1is the expected value operator, and the expected value is
taken with respect to the random process ni(t)o The functional
given in Equation (1.5) can be thought of as the average of the
functional given in Equation (1.2) over a great mumber of trials. It
is reasonable that the control which extremizes an average over many
trials will yield an approximate extremal in a particular case.
Previous studies have been made (see Wonham (Ref. 3), and Tung
(Ref. 4) ) in which an optimal stochastic control is computed by means
of the dynamic programming method. The condition which the optimal
control must satisfy takes the form of a partial differential equation
which is very difficult to solve. Kushner (Ref. 5, 6, 7, 8), and Lass
(Ref. 2) have presented a calculus of variations approach for determin-
ing the optimal stochastic control, which is analogous to the deter-
ministic calculus of variations method. Kushner (Ref. 1) has applied
the approach to a nonlinear control problem in which additive external

noise occurs in the dynamic process at discrete points in time.

The Problem To Be Studied
In this study, stochastic systems which contain small continuous
additive noise in the controls, as well as small uncertainties in the
initial conditions, will be considered. The conditions which the control
must satisfy for optimality of the functional given in Equation (1.5)
are derived by using the stochasfic variational approach. The variation
of the functional given.in Equation (1.5) is carried out with the
constraints that the equation of motion (1.4) must be satisfied at all
points of time in the controlling interval, and that the expected value

.f the state, xi(t), is specified at t, and te, i.e.,



(%]

E [x;(tg)] = x5

E [x;(t)] = x;p (1.6)

Application To A Space Guidance Problem

The example picked to illustrate the theory is that of a continuous-
ly thrusting ion-engine space vehicle, traveling on a minimum time Earth-
to-Mars transfer. The state of the system consists of the position and
velocity coordinates of the spacecraft, and the controls are the magnitude
of the engine thrust per unit mass and the thrust orientation angle.
The thrust/mass magnitude is considered as a control in the sense that
it is a parameter in the forcing function of the equations of motion. The
thrust orientation angle is a true control in the sense that it can be
varied to guide the spacecraft. It should be noted that noise is assumed
to occur in the thrust/mass magnitude and/or thrust orientation angle.
The vehicle model is simplified to a point mass, and the equations of motion
exclude all effects other than those due to the engine and the gravitational
attraction of the sun. The orbital planes of the Earth and Mars are assumed
to coincide, and the spacecraft trajectory as well as the noise errors are

assumed to occur in that plane. Therefore the analysis is carried out in

two dimensions..

Outline of the Study
In _Chépter 2, a model for the disturbing noise is developed, and

its applicability to the controls of a space vehicle is discussed. The
main difference between the noise model assumed in this work and the
noise model used in previous studies is that for this problem noise which

is autocorrelated in time will be considered. It is felt that time
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[ 1)

correlated noise is more representative of physical phenomena than
uncorrelated or 'white" noise.

Chapter 3 is concerned with the effect of autocorrelated noise .
on an optimal deterministic trajectory. The effects are examined by
deriving differential equations which describe the time histories of the
means and standard deviations of the state errors resulting from the
perturbing noise. These means and standard deviations are computed for
the Earth-Mars transfer problem, and the results are compared with the
results obtained by taking averages over several Monte Carlo simulated
trajectories. .

In Chapter 4 the optimal stochastic control is found by extremi-
zing a functional of the type given in Equation (1.5) by applying a
stochastic calculus of variations technique. The solution takes the
form of an expected value over the necessary conditions which result
from the variational problem. Then the stochastic solution is expanded
about the deterministic necessary conditions and a corrective optimal
control program is derived. Since the perturbing noise is assumed
small, the expansions are carried out only to second order. The results
obtained by applying the control program to the Earth-Mars transfer are
presented at the end of the chapter.

In Glapter 5, the problem of finding the optimal stochastic control,
conditioned on information about the state of the system gained during
flight, is treated. A range-rate type observation, which contains
additive error noise, is made at discrete points in time, and conditional
means of the system state components are computed. The scheme includes
the computation of conditional means of the noise occurring in the

system at the times of observations, as well as the computation of



conditional means of the state components. An optimal control
correction is made after each observation. This closed-loop control
scheme reduces the standard deviations of the state components while
increasing the degree of optimality of the control.

A summary of the results and a list of possible extensions
to this work appear in Chapter 6.
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CHAPTER 2
FORMULATION OF THE NOISE MODEL

Characteristics of the Perturbing Noise

Consider the dynamic system which obeys the differential equations

of motion
x.i = fi(x9 u, n, t) i=1?°”‘"n (2'1)

The n; (t) are components of multidimensional additive noise in
the controls u, (t). In order to analyze, in a precise mammer, the
behavior of a dynamic system such as that described by Equation (2.1),
some of the statistical properties of the noise n i(t) must be known.
Since, in the case of noise occurring in the controls of continuously
thrusting space vehicle, these properties are not known, certain intui-
tive assumptions about .ni(t) must be made. It is desirable that
n; (t) possess the following properties:

1. n;(t) should possess a unimodal bell-shaped probability
density function. This implies.that small values of the
noise are expected to occur more often than large values.

2. niét) should be unbiased, i.e., ‘the statistical average
of the noise should tend to zero.

3. ni(t) should be autocorrelated in time. This is desirable
since some control noise could be internally generated by
mechanical failures.

4. ni(t) should be a stationary process. This implies that
the variance of the noise is expected to remain constant in

time,



The ’rnstein-Uhlenbeck Stochastic Process

A stochastic process which fits the preceding description was
introduced by Ornstein and Uhlenbeck as a model for the velocity of a
particle undergoing a Brownian motion (see Ref. 9). Let n(t) be a

- scalar example of this process. The statistical properties of the

Ornstein Uhlenbeck (0.U.) process are defined by the following relations:
1. The probability density function is

1 Et)]2
Ffn(t) ) = 1 e 2 |o (2.2)
Y 2r o

where o is the standard deviation of the process. From
Equation (2.2), it follows that f(n(t) ) is unimodal
and bell-shaped.

2. EMh®)] = fn(t) f(n(t) ) dt = 0 (2.3)

The 0. U. process is unbiased.

2 “8lty-ty| '
3. EDn(t) n(t)) ] = R(ty, t)) = o e (2.4)

The process' is exponentially autocorrelated in time, and
since R(tl, tz) depends only on the time difference
(tz-tl) » n(t) is stationary.
It will be instructive to examine further the properties of the
0. U. process and its effect on a simple linear dynamic system.. The

0. U. process obeys a Langevin equation of the following type
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n(t) + Bn(t) = w(t) (2.5)
where w(t) is Gaussian white noise, that is,
Ewt)] =0 2.6)

E [w(ty) w(t)) 1 = Qe(t,-t)) 2.7

where Q is the variance of w(t) and G(tz-tl) is the Dirac delta
function. A solution of the Langevin equation can be written, in terms

of a stochastic integral, in the fomm

. t
-8(t-ty) f -8(t-1)
n(t) = e n(ty) + e w(z) d (2.8)

)

It will be helpful to digress for a moment from the current line of
reasoning, in order to develop an important property of the stochastic
integral. It is known (see Ref.1D) that if x is a random variable
distributed according to the density function Ff(x) and g(x) is
some function of x , then

E (g0 ] = f () F(X) & 2.9)
If then g(t) is some functional of the random process, x(1) say
. .
g(t) = fh(X(r),)dr A (2.10)
0
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then g(t) depends on the entire function x(1), 0 <t < t, i.e.,

8 = g(x(r;), X(15), vy X(ry), ... ) (2.12)

where T; Tuns over all points in time. The expected value of g(t)

can then take the fom

E [g(t)] = ff fh(x(r)dtf(x(tl), x(-rz), ...)dx(rl)dx(rz)... (2.12)
~ - 0
Now, if the integration process is visualized as the limit of a sum,

Equation (2.12) can be expressed as follows:

. ® n . )
E[g(t)] =f ceen Lim .21 h(x(ti) )Atif(x('rl),...)dx(tl)... (2.13)
me i=1

Taking the summation outside of the integration over the random variables
x(t3), x(13)5 covenn. , will lead to

n

E[g(t)] = Lim : ff h(x(ti))f(x(rl),...)dx(rl)... ]Ari (2.14)
e i=] 4

Now, on converting the summation back to an integral, the following re-
sult is obtained ‘
t

Efgt)] = fE h(x(t) ) dr (2.15)
0

Thus the expected value operator and the stochastic integral commute.

This property will be used extensively in discussions given in Chapters



3, 4, and 5. It should also be noted that if Equation (2.15) is

differentiated with respect to t the following expression is obtained:

FEE®] = Ehx®) = E[%%] (2.16)

Thus the expected value operator and the derivative commute.

Returning to Equation (2.8), and using the notation
EC) = ()

it follows that

t
_ -8(t-tg)_ f -8(t-1)_
n(t) = e n (to) + e w(t) dt (2.17)

%

Now since w(r) 0 Equation (2.7) reduces to

e-B(t-to)_
n(tg) (2.18)

n(t)

Thus, if for any 0.U. process F(to) =0, then n(t) =0
for all t > to.

Now consider the autocorrelation properties of the 0. U. process.
Note that n(tl)n(tz) can be expressed as follows:

B(tytg) -8(t;-tp)

n(tl)n(tz) = e n(to)n(to) +

tl t2
-8(ty-1) -8(t;-p)
e n(tgw(r)dr + . e n(tydw(p)de +
tov ¢

1 tz‘B(tl'T) 'B(tz'D) 0
f [e e wi(p)w(t) dp dt (2.19)
to “to

0

12
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By taking the expected value of Equation (2.19) and imposing the condition

that E (w(r)n(to) ) =0, the following expression is obtained.

-B(t;-ty)-B(t,-ty)

E [n(t)n(t))] = R(t;, t,) = e R(ty,ty) +
tl tz
-8(ty-1)-8(t,-0)
e Q 8(t,-t) dudo (2.20)
th Y

Carrying out the integration of Equation (2.20) leads to the follow-

ing expression,

-8|t,-t, | -8 (t,+t,)+28t
2 "1 -%]e 172 0 (2.21)

R(t;,t,) = gg-e + [ R(tg,ty)

Stationarity of the process, i.e., R(t;,t,) = R(Itz-tll) requires

that R(to,to) = 35 hence

-8|t,-t, |
R(t),t,) = gg-e 21 (2.22)

In view of Equation (2.4), Equation (2.22) leads to

R(t,t) = o = 3= (2.23)

Sample functions of the O. U. process can be generated with the aid
of a2 normal random number generator. Consider the statistics of
n{t) when n(to) is known. It follows then, that

-B(t-to)
E [n(t)ln(to)] = e n(ty) (2.24)
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A

and t t
-B(t-1) -8(t-p)
E [(n(t) - E(n(t)ln(to))fln(to) ] = f fe e Q 6(t-p)dpdr
Yo % (2.25)

Carrying out the integration will lead to

-28(t-ty)
ozln(to) = %B-[I-e 0] (2.26)

Hence, the conditional density function is given as follows (see Ref. 9)

2
1 | n(®)-n(®) [n(ty)
)
f(n(t)ln(to)) = —31 . a|n(tg) (2.27)

/7;-'o|n(to)

If the output of a random mumber generator, X; is indepen-
dently distributed according to the density function

2
- 70x)

£lx) = e (2.28)

1
Zr

Then a sample function n(t) can be discretely generated by the

recursion relation

- - -B(t,,..-t.)
n(ti) = Xpup 0 A- e Bl ey e BLE (g )

where n(to) = Xp0 . Figure 1 illustrates such a sample function, where
the numerical results were generated with Equation (2.29) for the values

c=1 and g = .01.
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Figure 1. A Simulation of the Ornstein-Uhlenbeck Stochastic Process
(o =1, 8 = .01)
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a -

Application To A Simple Linear Dynamic System

The effect on a dynamic system of a random noise process such

as the 0. U. process can be shown by the following example. Consider
the following system of equations, in which a particle of unit mass
undergoes one dimensional motion under the influence of an 0. U.

process acceleration. Such motion is described by the following equations,

n(t)

<
i

e
]

v (2.30)

where the initial conditions are specified as

v(to) = 0
x(to) = 0
t0 = 0

The solutions for v(t) and x(t) can be expressed as integrals which
depend on the stochastic forcing function, i.e.,
t
v(t) = n(t) dr

T (2.31)
x(t) = ff\(o) dp dr
_ 00

The expected values of Equations (2.31) can be written as follows:

t
E [v(t)] LE(n(T)) dt = 0

t 1 (2.32)
[fﬁ(n(o)) dbdr = 0
0

E [x(1)]
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Consider now
Hets
E [V(t))v(ty)] = E f fn(p)n(T) dodr (2.33)
0 0

If it is assumed that t, >t then Equation (2.33) can be ex-

1
pressed as

t

t, T 1
2 ~B(t-p) 2 ~B(p-1)
E [v(tl)v(tz)] = ce do + o’e doldr (2.34)
0 0

T

Now, carrying out the integration in Equation (2.34) leads to the following

expression

2
-gt -8t B(t,+t,)
[e 2+e 1_"e 172

E [v(tl)v(tz)] = :—2— + ZBmx(tl,tz)-Z] (2.35)

The variance of v(t) is

2 | -8t
E [v(t)?] = Eg_ [e +8t - 1] (2.36)

In a similar manner, the following expressions can be obtained

2 -8t
E [v(t)n(t)] = %- [1 - e ] (2.37)
02 B 1 2 -Bt '
E [x(t)v(t)] = - 1-8t + 2—(Bt) -e (2.38)
8~ L

N

[ -8t
Ex(®xt)] = 2 |e + 360 - Len? + ot - 1] (2.39)

—

w
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the standard deviations of v(t) and x(t) are now defined res-

pectively by

v = (E [v(t)z])% (2.40)

« - (e [xmz])%

Q
|

Q
I

Figures 2 and 3 show the velocity and displacement histories which
result as a consequence of the 0. U. acceleration process shown in
Figure 1. The standard deviations are shown also in the figures. It
should be noted that while the mean values of v(t) and x(t), given
in Equation (2.32), are zero for all time, the standard deviations

increase without bound.

Summary

The motivation for this chapter lies in the justification for
selecting the 0. U. process as the noise process to be dealt with in
the following chapters. The process is seen to satisfy the intuitive
criteria désignated for random disturbing phenomena, and appears to
have a reasonable effect on a simple physical system. It should be
noted that by adjusting the parameter g in Equation (2.4) one can
simulate near-white noise (in the case of large B8) and noise which
is constant in time (small g ). This flexibility increases the

desirability of the O. U. process model.
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Figure 2. Velocity Time History Resulting from an 0.U. Process Acceleration
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Figure 3. Displacement Time History Resulting from an 0.U. Process Acceleration



(CHAPTER 3
THE EFFECTS OF NOISE ON AN OPTIMAL DETERMINISTIC TRAJECTORY

Theoretical Development

The next step in the study of optimal stochastic control is to
look at the effects of a perturbing noise such as the 0. U. process
on a multidimensional nonlinear dynamic system. Consider the solution
of an optimal deteministic control problem which can be written in
the fom

o« % % *
X, = fi(x » U, t) (3.1)

where the * designates the optimal deterministic trajectory. Suppose
.

that the controls u, (t) are perturbed by an additive multidimensional

version of the 0. U. process developed in Chapter 2, i.e., the actual

control input to the system is:

u(t) = u (1) + (1) (3.2)
where
Efn] = 0 | (3.3)
E [nj(t) my(t))] 2P e sumea)

%

The coefficient °jk2’ j=l...,mk=1, ..., m is a co-

variance component of the multidimensional ni(t) process, and Bjk is

20
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the time correlation coefficient associated with the °jk2 component
of the covariance. It is assumed that the multidimensional noise is
not cross-corrclated, i.c., G,i.j = 0 for 1#j.
The state, resulting from the noisy control ui(t) , obeys the

differential equation

X = £l u, 1) (3.4)
An ensemble of stochastic trajectories is implied by Equation (3.4).
Consider the Taylor series expansion of one of these trajectories about

the optimal deterministic trajectory described by Equation (3.1).

*
. X & . 3f-* ., 3f; «
xi = fi(x » U, t) (xj'xj ) Wj—(uj uj )
*

1 az'fi % * 32fj_ % % ’

+ Vi 3Xj 3xk (Xj 'XJ- )(Xk'xk ) + 'a—x;-a—ik— (XJ 'xj )(u-k'uk )
3 f *
2‘ TR a“k(u U )(uk‘uk ) JE SR (3.5)

Now introduce the notation
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2, % 2. % 2. %
L U o L S (3.6)
I axjaxk ixjxk axj auk ixjuk auj auk i juk *

By rewriting E.quation (3.5) and subtracting out Equation (3.1), the follow-

ing result is obtained

- L |

* 1 * *
fixj“'k 8, ey ) + ffiujuk (uj-uj Y )+ ... (3.7

Substitution of equations (3.2) into Equations (3.7) leads to

s 1
f. sx.n, + 3 f; n.n, o+, .., (3.8)
ixu ™ k 7 tugu 7 k

Making use of linear system theory (see Ref. 11), a solution to

Equation (3.8) may be written in the form

t
6xi(t) = Qij (t:to) 5xi(t0) + -[Qij (t,1) fjuk('f) nk(T) +

0
1 1
z fjxkxz 6xy 6, + fjxkuz, X n, + ijuk“;, Myt . hde (3.9)

where Gxi(to) is the initial state deviation, and the coefficient
¢ ; (t,to) is an element of the so-called state transition matrix. o j
satisfies the conditions that
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&ij (t ’tO) = fixk(t) ij (t sto)

¢..(t,,t = §.. 3.10
15 (tgstg) B o igg (3.10)

by resubstituting Equation (3.9) in for 6x, and 6x, in Equation
(3.9) the following expression is obtained.

t

Gxi(t) = Qij (t,to) ij(to) + f‘bij(t’r) { fJuk n *
Yo

1 T

%

T
[°m (r,ty) x (tg) + ) °zq (1,8) fq“n n ds] +
' : ty (3.11)

T

fjxku!, ["km('f,to) len(to) + f"]q)('fyp) fwmnm dp] ny + %—fjukuznknl} dr
t

0

As stated in the introduction, the analysis will be carried out under
the assumption that the variance in the perturbing noise is small.
Since ni(t) is assumed to be Gaussian, and E [ni(t)] =0, it
follows that

2j-1
Efn(t) ] = 0 j=1,2, ....

E 2j - . 2 j
[ni(t) ] = L.3....(25-1) [E(n; ()" ) ] (3.12)

The first condition implies that, for a normal distribution, all

odd moments about the mean vanish, while the second condition implies
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that all even moments about the mean can be expressed in terms of
positive powers of the variance. Hence, in the following discussions,
all moments of ni(t) higher than the 2nd are assumed small enough
to be neglected.

By taking the expected value of Equation (3.11) and by requiring
that the perturbing noise is uncorrelated with any uncertainties
in the initial state, i.e.,

E [sxi(to) ny ] =0 (3.13)

the following expression is obtained.

vSfi(t) = °ij (t,to) ij(to) +

t
1 _ 1 ;
f"ij (t,7) { Vi fjxkxl Mkz(T’T) + fjxkuzhkl(r »T) + Tfjukulez(r sT)} dr

0 (3.14)
where
t
his(8,8) = E [xy(8) (@] = f ity (Ryy (6,0 & (3.19)
to
and

Mij (t,t) = E [Gxi(t)cxj (t)] = ¢ik(t,t0) Qj,‘(t,to) E [sxk(to)sxz(to) ]+

t t
f f 05 (6:0)85, (.5, (0)Fpy (DR (0,8 5 do (3.16)
m n

t t

0 0
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It should be noted that Equation (3.14) is a very important result.
It can be seen that if Rij (p,t) # 0, or if Mij (to,to) # 0, then,
in general Gii(t) = 0 . This is true only for nonlinear dynamic
systems where the second partial derivatives of f3 do not vanish.
In the case of a linear dynamic system, 6§i(t) will vanish unless
ai'i(to) is nonzero.

In order to solve the set of Equations (3.14), (3.15), and (3.16) ,
by conventional numerical integration methods, the equations will be

converted back to differential form. By making use of the Leibnitz

rule, i.e.,
h(t) h(t)
% f ft,Ddr = FERENGE - £(t,g(t) B + f L) o an

Equation (3.14) can be differentiated to obtain

-
= . 1
6 = by (t,tg) 6x(tg) + 05 (L) _ij"kxz M, (t,t) +
- t
1 1
Tixa, a8 * 7 fiyu R0 |+ f %5 (80 7 Fjxx Ma (00
- t
0

" L M (60 ¢ 7 Fix gy, B (000 o (3.18)



By substituting Equation (3.10) into Equation (3.18) the following

expression can be written

t

6§'i(t) = fixk I:"’kj(t"‘o) 8x;(tg) + f #; (t57) % fszx M
t m
0
fixu Byp * 7 Fiyy R dv |+ ZF Mo (t,0) +
jxu Tam juu um ujxk jk
1
fixjuk hjk(t,t) + 5 fi“j“k Rjk(t,t) (3.19)

and by substituting Equation (3.14) into Equation (3.19), the follow-

ing differential equation for Gfi (t) is obtained.

- 1
f:, &X. + = f. M. + f. h.,, + f. R. (3.20)
i ix. 3 2 ixx jk ixsuy jk tuyu jk

J
From Equation (3.20) it is seen that, under the small noise restriction,
Gii (t) obeys a forced linear differential equation in which the forcing

functions involve the covariance components of the state and noise.

In a similar manner, Equation(3.16)can be differentiated to obtain

26
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M (68 = by (t,tg) o5, (t,t)) M (tg,t)) +

5k (tstg) &5, (t,t0) M (to,ty) +

t

‘ik(t’t) fkum(t) f Qj"(t,s) flun %(t,s) ds +
%o
t

f‘l’ik(t,p) fh,m(p) Rm(pst) do @5, (t,1) fmn(t) +
t
0

t t
[611(&,0) fk"m(p)f ¥5,(t,9) fmm(s) R, (p,5) dsdo +

0 t

t t
f $1k(t:0) figy 6) f b54(t9) £y () Rpy(o,8) dsdp (3.2D)

t t

0 0

Equation (3.21) reduces to
Mij = fix Mg * Mik Fyx

fiuk by, + hy fjuk (3.22)

By differentiating the expression given in Equation (3.15) the following
result | is obtained

t
ﬁij (t,t) = Qik(t,t) fkum(t) &n] (t,t) + f‘bik(t’ﬂ fkum('r) l‘ﬂJ (t,7) dr +
. to
t <
f@ik(t,t) fig (© @nj(t,r) dr O (3.23)
m

B
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By recalling Byuation (3.4), i.e., Ry;(t,7) = oijz e 1 ,

the derivative of Ri j (t,p) can be computed as follows

2 'Bij (t"T)

Rij(t,-r) = -B e i, j not summed (3.24)

ij %ij

Since o;5 =0, if i#j,

ﬁﬁm)=$ﬂ%mﬂ=-ﬂ% (3.25)

Hence, after substituting Equation (3.25) into the expression given in
Equation (3.23), the differential equation for hi ; (t,t) can be written

as follows,

hi; = fix Mg * Fiu R ™ Bik By (3.26)

k K

The set of Equations (3:19), (3.21), and (3.26) fully describes the
behavior of the expected value or "mean" deviation from the optimal
deterministic trajectory which obeys Equation (3.1). Equations (3.20),
(3.22) ,and (3.26), can be directly integrated in terms of specified

initial conditions

(=]

8x, (to) =
Mjj(tgotg) = Mijg |
hy;(tgtg) = 0 (3.27)

28
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Application To A Space Guidance Problem

The results derived in the previous section will now be applied
to the example space guidance problem discussed in the introduction.
Consider a point-mass spacecraft undergoing a minimum time transfer
from Earth to Mars under the influence of the gravitational field of
the Sun and a continuously operating low-thrust ion engine. The
geometry of such a system is illustrated in Figure 4. The state equations

of the transfer trajectory, in polar coordinates are

. vz u

u= T - -z + a Sina
T

v = -3V

vV = T + a cosa

r = u

d = ¥

® = 7 (3.28)

where:
a = — T
mo-m(t-to)

r 1is the Sun-spacecraft distance
is the angle made with the Sun-spacecraft
line with the Sun-Earth line at launch

u is the velocity component along the Sun-
spacecraft line

v is the velocity component perpendicular to
the Sun-spacecraft line
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Figure 4. Earth-Mars Transfer Geometry
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u 1is the solar gravitational constant
T 1is the thrusting force magnitude
m, is the initial spacecraft mass
m is the mass flow rate and
a is the engine thrust direction angle,
measured from a perpendicular to the Sun-
spacecraft line.

The thrusting force of the engine, T, is held to a specified
constant, and the control which is used to bring the terminal system
state to coincide with that of Mars is o« , the thrust direction angle.
A calculus of variations approach is used to find the deterministic
thrust direction program o(t), which completes the transfer in mini-
mm time. The solution to the variational problem is presented in
Appendix A. The solution to this optimization problem is used as the
optimal determministic trajectory, about which the mean values of éu,
év, 8r, 66, and their respective standard deviations, Oy » 9y » Oy »

and o are computed.

g
The purpose of examining the characteristics of the mean deviations
is to determine whether or not a stochastic control will help appreciably
to satisfy the terminal conditions of the transfer. An analysis of the
standard deviations will give some indication of the dispersion of the
possible occurring stochastic trajectories.

Matrix formulations of Equations (3.20), (3.22), and (3.26),
applied to the Earth-Mars transfer, appear in Appendix B. These

equations have been numerically integrated forward in time for several

combinations of values of the following parameters.



a. o the standard deviation of noise occurring in the thrust/

a’
mass magnitude
b. o, the standard deviation of noise occurring in the thrust

orientation angle

c. Ta = %— , the correlation time of the noise occurring
a
in the thrust/mass magnitude
d. Ta = %L , the correlation time of the noise occurring in the

a
thrust orientation angle

e. oy, the standard deviation of the error in an initial state
component. It should be noted that errors in the
individual components of the initial state are assumed

equal and are not cross-correlated, i.e., 940 = %v0

The results are shown in Figures 5 through 18. The figures
labeled a show. the time histories of the mean deviations from the optimal
deterministic trajectory, é&u, v, 6T, and &6. The figures labeled b

show the time histories of the standard deviatioms, i.e.,

—2 2.1
0y = Oy - 6T op = Mgz - 677

The means, ¢u, 8v, §r, 66, and standard deviationms, 0> Oy» Tps Tg»
are computed and shown on the plots in the following system of umits, |
unit of distance = radius of Earth's orbit (1AU)
unit of velocity = velocity of Earth (1 VE)

unit of mass = ‘initial spacecraft mass (1 mO)

32
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The remaining constants used in the computation are listed in Appendix C.
Although the plots of the time histories of the means and standard
deviations' are presented in the above units, i.e., 1AU for position
components, and IVE for velocity components, the time scale is pre-
sented in days. The parameters of interest in the following respective

plots are:

In Figures 5 through 7, o, ranges from .02T to .0ST

a
o =0

a
Ta = 1 Day
oy ~ 0

In Figures 8 through 10, T, ranges from 10 days to 1000 days.

a
o, = .02T
c = 0

a
oy = 0

In Figures 11 through 13, o_ ranges from 1° to 3°

a

o, = 0

Ta = 1 day
9y = 0

In Figures 14 through 16, T_ ranges from 10 days to 1000 days

a

0Q = 0
- o

Oy = 1

= 0
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In Figures 17 and 18, oy Tanges from 1 x 10

53

3 3

to 2x 10
o. = .02T
a 1 day

g =0

=~
"

The plots in Figures 5 through 18 illustrate several important

facts regarding the effects of noise on nonlinear deterministic optimal

trajectories. The primary trends shown in the figures are summarized

as follows,

1. The occurrence of noise in the equations of motion always im-

plies that the mean trajectory will differ from the deter-
ministic trajectory. This is a consequence of the non-
linearity of the equations of motion. The plots demonstrate
that éu, &v, 8T, and 66, are in general non-zero if noise
occurs in either the thrust/mass magnitude or its direction.

The mean deviations éu, 6V, éT, and 68, are all seen to

- increase as the perturbing noise standard deviation increases.

See Figures Sa through 7a and Figures 1la through 13a. A
tentative caonclusion is that the larger the perturbing noise is,
the larger the average deviation from the deterministic tra-
jectory will be.

The mean deviations are also seen to increase with increasing
correlation time. See Figures 8a through 10a and Figures 14a
through 16a.

The standard deviations of the state, Oyus Oy» Ops and Tgs
all increase with both increasing noise standard deviation

and increasing noise correlation time. See Figures 5b

through 16b. .
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Both the means and standard deviations of the state grow

(73]
)

larger with increasing initial state uncertainties. See
Figures 17 and 18.

6. The effect of the nonlinearity of the system is shown on
the standard deviation plots, Figures 5b through 18b,
especially for the case of noise occurring in the thrust
orientation angle. Unlike the standard deviation histories
in Figures 2 and 3, which show a monotonic increase of the
standard deviations with time, the values of o, o , o,

and Oy

especially Figures 11b through 16b.

are seen to show oscillatory tendencies. See

7. The effect of the optimality of the deterministic tra-
jectory is shown on the standard deviation plots especially
in the case of large noise correlation times. For instance
in Figure 10b, % is seen to decrease after the rapid
thrust direction change in the optimal deterministic

trajectory. See Figure A.2.

Simulation of Stochastic Trajectories

In order that the effects of noise in the controls of a space-
craft on an Earth-Mars trajectory can be examined further, several
sample trajectories are iintegrat'ed using values for the perturbing
noise generated from a random number generator. In particular, the
sample trajectories are generated with noise occurring in the thrust/
mass magnitude.

The equations which are integrated forward are the perturbed

versions of Equations (3.28).



2

Co
]
"1|<

u .
- + +
-Z-r (a “a) sina

v = -2V

V=4 (a+na) cosa

r = u

8 = ¥

6 = 2 (3.30)

where n q 1s the sample of noise occurring in the thrust/mass
magnitude. The values for n q are generated recursively for the

numerical integration by the formula

-28,(t;,1°t;) -8, (t;,17t;)
n,(ts,q) =xi+lo£/1-e a i1 + ng(ty)e a 1+l 1% (3.31)

where the x; are generated from a normal random number generator.-

The components of the detemministic state, found by integrating
Equations (3.28), are subtracted from the components of the sample
trajectory state computed from the integration of Equations (3.30).
The resulting components of the sample state deviation for one of the
simulated trajectories are presented in Figure 19a. The correspond-
ing sample perturbing noise, generated with the relation given in
Equation (3.31), is plotted in Figure 19b.

The noise parameters for the sample trajectory in Figure 19

are listed here.
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Ten sample trajectories, with these same noise parameters have
been used to generate sample means and standard deviations of the state,
which can be compared to the theoretical means and standard deviations
appearing in Figures 7a and 7b respectively.

The sample means are computed from the following formulas

N

i «Sui

68 = —g— (3.32)

with N =10. The sample standard deviations are computed from the

formulas

r-N - !5

2
L(8u,-6u)
1 1

(3.33)




The time histories of the sample means and standard deviations
of the state are shown in Figures 20a and 20b respectively. The

sample mean and standard deviation of the noise n_ are computed

a
with the formulas

Q
Y
#
fl

(3.34)

The time histories of n, and o a appear in Figures 20c and 20d,
respectively. Since the sample mean and standard deviation of the
noise n, show a large dispersion about the theoretical values of

n, and o,, respectively, it can be concluded that many more tra-
jectories would have to be included in the averaging in order to find
close agreement between the sample means and standard deviations of
the state, and their theoretical counterparts. However, the time
histories of the sample standard deviations in Figure 20b are seen to
resemble the theoretical standard deviation time histories for the

same noise parameters, shown in Figure 7b.

Sunmagz

The main reason for examining the effects of perturbing noise on
an optimal deterministic trajectory is to determine if there is
sufficient reason for developing a stochastic control, or, in other

words, if there is sufficient reason for developing a control which
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compensates for the expected effects of the perturbing noise. The
theoretical results demonstrate that for the case of a nonlinear
system the mean trajectory will always differ from the deterministic
trajectory. Hence a stochastic control, as defined in the intro-
duction, will bring the final state closer to the terminal conditions
in an average sense. It should also be noted that in the case of
the Earth-Mars transfer, the standard deviations are large compared
with the mean deviations. This is true of all dynamic systems
which are not too highly nonlinear. In such systems a method for
updating the contrel program during the controlling interval is
necessary in order to achieve a high degree of satisfaction of the

terminal constraints.



CHAPTER 4
THE STOCHASTIC CALCULUS OF VARIATIONS
APPLIED TO OPTIMAL STOCHASTIC CONTROL

Theoretical Development

The results of Chapter 3 indicate two important facts about the
effect of small perturbing noise on an optimal deteministic trajectory.
First, the mean of the ensemble of possible random trajectories differs
fram the deterministic trajectory, and second, the standard deviation
of the state ensemble, in general, increases throughout the controll-
ing interval to =t < t.. Both of these characteristics indicate an
inadequacy of an optimal deterministic control for randomly perturbed
dynamic systems. The first of the difficulties can be overcome by the
determination of a control program which compensates for the expected
effects of the perturbing noise on the system state. Such a control
will be called optimal stochastic control. This chapter is devoted
to the derivation of an optimal stochastic control procedure. The
procedure is determined by utilizing a stochastic calculus of variations
method which is analogous to the methods used in the deterministic calculus
of variations.

In the theory of optimal deterministic control, (see Appendix A),

the following set of differential equations is considered
ii = £;(x,u,t) i=1, ...,n (4.1)
A set of controls ui(t), i=1, ...m, is sought such that

te
Iu] = ffnﬂ (x,u,t) dt (4.2)
%
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is an extremum, subject to constraints at the initial and final times

of the form

(4.3)

x (Y = x5

X (tg) = x¢
For the optimal stochastic control problem, the following set
of stochastic differential equations is considered

ii = fi(x’u:“:t) i= 1, ... n (4.4)

where, in the present study, "i(t)’ i=1, ..., m, is additive noi_se
perturbing the controls ui(t). The initial conditions for the xi's

are specified. That is,
E[xi(to)] = X (4.5)

The functional to be extremized and the constraints at the final
time cannot be formulated in a determministic manner because of the
presence of the noise in the differential equations. Hence, a set of
nonrandom controls u, (t) 1is sought such that

te
I[u] = E([fml(x,u,t) dt (4.6)
0

is an extremm, subject to the constraint that Equation (4.5) be

satisfied at the specified initial time ty> and that at the



65

unspecified terminal time te
Elx;(t)] = x;¢ 4.7

Also, the differential equations (4.1) must be satisfied at all points
of time along the trajectory. The constraints given in Equation

(4.5) and (4.7) are adjoined to the functional by means of unknown
sets of constants My and vi respectively, and the equations of
motion are adjoined to the functional by means of a set of stochastic

Lagrange multipliers p;(n,t). The constrained extremal value of

Ifu] can be found by extremizing

Ju] = "i[E(xi(tf) - xif)] + “i[E(xi(tO) - xiO)] +

: “
E ffn+1(x,u,t)dt + EJ pi(x:.L - fi(x,u,n,t)) dt (4.8)
1:0 0
Since vis Hi» X5 and X;0» are deterministic quantities, the
functional expressed in Equation (4.8) can be written as follows

t i
Ju] = E[‘\fi(xi(tf) Xie) *ouy (% (T -x50) + J Jf°n+1+pi(ii-fi)dt:] (4.9
| | 0

The expectation is taken over the adjoined differential equations of

constraint, (4.1) ,s0 that the control can be found in terms of deter-

ministic quantities, i.e., expectations over functions of the noise,

instead of in terms of functions of the noise itself. The method of

adjoining the differential equations of motion to the functional

Ifu] with a stochastic Lagrange multiplier which depends on the noise



ni(t) has been suggested by Lass (Ref. 2), and has been discussed by
Kushner (Ref. 1, 2).
A generalized stochastic Hamiltonian can be defined by

H(X,P;uaﬂ,t) = pifi - n+l (4‘10)

In view of Equation (4.10), the functional given in Equation (4.9)

can be written as follows

te

Ju] = E["i(xi(tf) - xif) + "i(xi(tO) - xiO) + f(Pil‘(i - H) d‘]

tg (4.11)

1
Now assume that the set of controls that extremizes J[u] is uj (t).

] )
Assume the correct values of Vis Wi and te, are R and

]
te . Let a resulting trajectory, for a realizable sample of the n i(1:)
?
process, be xi'(t) with resulting Lagrange multipliers P; (t).

Then consider neighboring trajectories of the form (see Appendix A.)

t 1]

X % X tebsxy i T omy tedyy
[ ] L
[} L
pi = pi + EGpi tf = tf + Eétf (4.12)

where the sxi's, 5ui's, Gpi's, 5vi's. cui's, and §te are arbitrary
independent quantities, which in particular are independent of the noise

ni(t). The constant € is an independent parameter, which is also
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noise independent. Note that the functional J[u] is a function of e.

The condition necessary for optimality of the control ui' (t) can be

stated as follows

Tl =83 =0 (4.13)

By making use of the commutative property of the derivative and the
expected value operator, as shown in Chapter 2, §J can be expressed

as follows

dxi (tf) d\) : dxi (to)

1
8J = Elv; —gg—* 3¢ (x(tp) - x40 v uy —x— ¢+

dui dtf

2 (x5 (t)x;0) + (py%;H) , &t

te f

dx. dp, . dx. dp. du, .
([Pi e o . T Gl W ] (4.14)
i i i
0
Equation (4.14) reduces, in a mamner like that of the deterministic

problem in Appendix A, to the following expression

8J = E[(vi*pi(tf))(Gxi(tf)+ii(tf)6tf) - H(tRsty + ov; (x; (tg) -x;)

/

[ 4

*(u37p; (tg))6x; () + om; (x; (tg)-x;) -
t
£

f (pi-rHXi)gxi + (Hpi-xi)api + Hujsuj dt] (4.15)
o



68

Since the arbitrary functions 8, , Su,, &p;, 81y, 8v, and §te are

independent of the noise ny (t), 8J can be written in the following manner

8J = E(vi+pi(tf))(Gxi(tf)+ii(tf)6tf) - E[H(tp)] st
+ 5\’1 E[Xi(tf) -xif] + E(ui‘Pi(to))‘SXi(to) + Sy E[xi(to) 'xio]

te
- f E[pi-l-Hxi]<Sxi+li[Hpi-xi]<‘Spi + E[Hui] Gui dt (4.16)
to

By the fundamental Lemma of the calculus of variations, the arbitrary
nature of the temms «Sxi, Gui, Gpi, Gui, Gvi, and Stg, imply that their
coefficients vanish identically. Thus the conditions necessary for the

) L 1 \J | L]
set Xip Ui 5 P35 30 08 be an extremal solution are

E[x. - H = 0 4.17
[x; pi] (4.17)
Elp; +Hxi] = 0 (4.18)
E[H. ] = 0 (4.19)
u.
i
at all points of time in the controlling interval to<ts<te,
E[x;(tg))-X;p = O (4.20)
Elp; (tgu;] = 0 (4.21)

at the initial time ty» and

Elx; (t)-X; ] = 0 (4.22)
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[
[=)

E[pi(tf)+\’i] (4.23)

[l
[=]

E[li(ty)] (4.24)

at the terminal time te.

The Equations (4.17), (4.18), and (4.19), with end conditions given
in Equations (4.20), (4.21), (4.22), (4.23), and (4.24), theoretically
yield an optimal control which takes in to account the expected effects
of the perturbing noise on the state and Lagrange multipliers. It should be
noted that although the control procedure derived from the solution of
Equations (4.17), (4.18), and (4.19) is referred to as an optimal stochastic
control, the control procedure is a nonrandom function of time, based on an
a priori knowledge of the statistical behavior of the noise in the controls
of the dynamic system.

In general the preceding equations are very difficult to evaluate,
since the probability density functions necessary for the computation of the
expected values are not readily available. Recall that in Chapter 3, an
approximate differential equation, which describes the motion of the mean
of a stochastic ensemble of trajectories, was developed in terms of the
mean deviation from a deterministic trajectory. The differential equation
for the mean deviation was developed by expanding the differential equation
governing the stochastic trajectory about the differential equation govern-
ing the deterministic trajectory. Expected values were taken over the terms
of the expansion in order to yield a differential equation for the mean
deviation. The equation for the mean deviation was found to be driven

by covariance components of the state deviation and the perturbing noise.



A similar procedure will be employed here in order to evaluate
the necessary conditions of the optimal stochastic control problem.
The conditions necessary for stochastic optimality, Equations (4.17)
through (4.24), will be expanded about the solutions to the determinis-
tic optimal control problem, derived in Appendix A. The resulting
necessary conditions will be differential equations for the mean
deviations of the state and the Lagrange multipliers. The differential
equations will be driven by covarinace components of state, noise, and
Lagrange multipliers, and by éu,, the difference between the optimal

stochastic control and the optimal deterministic control.

The deterministic necessary conditions, derived in Appendix A,

will be stated here for the reader's convenience. The conditions are
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R 4.25
X - Hp (4.25)
b, +H " = 0 (4.26)

1
H, " =0 (4.27)
i

at all points of time in the controlling interval tg st <t

x; (k) = xy (4.28)



pi*(to) = ui* (4.29)

at the specified initial time ty, and

xi*(tf) = x; (4.30)
*® ®

p; (tg) = -v; (4.31)
*

H(t) = 0 (4.32)

at the unspecified terminal time te.

Consider first a Taylor expansion of the terms in Equation (4.17)
about the detemministic solution given in Equation (4.25). The
expansion can be written as follows

s o % x &
E[Gxi+xi - fi(x su ,t) - Fix.%% - £

su.+n.) -
j J 1u.( uJ "J)

J
lf 6X.6%, - f 8x. (uy +n,) -
z 1x,%.°75 %k x5k L%
1 =
ffiujuk(ﬁuj"nj)@uk'fnk)] =0 (4.33)
In view of Equation (4.25), the following expression can be

obtained.

. 1
E[ﬁxi - fixjsxj - fiuj (6uj*nj) - Tfixjxkaxjéxk

I
o

£ ixjukaxj (Suptny) - %'f iujuk(sujmj) (Suy+my)]
(4.34)



By making use of the commtative property of the derivative and the

expectation operator, the Equation (4.34) reduces to

= - 1
6x. = f.  8&X.; + f. Su,+ xf. M., +
i ix; iy ™5 Z ix;x jk
— 1 )
£ (h;, +6x.6u ) + » f. (6u.éu, +R..) (4.35)
ixsi ik %50 Y7 fusy URik

where, following the definition used in Chapter 3, M1 j is defined

as follows

Mij = E[sxiaxj] (4.36)

It should be noted that for a given control deviation Gui (t) and a
given sample of the "i(t) process, the actual state deviation will
obey the differential equation

_ 1
6x; = fixj éxj + fiuj (Guj+n j) t > fixjxk ijsxk +

f ixjxk ij (6uk+nk) + %— fiujuk (Guj+nj) (5uk+nk) (4.37)

By differentiating Equation (4.36), it is seen that Mij obeys

a differential equation of the form

Mij = E[sxiaxj] + E[axidxj] (4.38)

By substituting Equation (4.37) into Equation (4.38), and

72

neglecting terms of higher order than the second, the following expression
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can be derived

M = i i Mg T, (O058%; )+
(6x; 6y +h; 1) f ju (4.39)

where h, j is defined as follows

hi; = Eléx;n;] (4.40)

From differentiating equation (4.40) with respect to time,

it is seen that h obeys the differential Equation (3.26), i.e.

Pii T T Mg T By Padi (4.41)
dow consider the expansion of Equation (4.18) about the necessary
couuition of the deterministic problem, given in Equation (4.26).

The expansion can be written as follows

‘a';;“;;fi:- el H §x.+H (Su.+n.) +
' S 1xj j xluJ J ]

Hx p Gp ’ZHx X. stxj sxk * %Hxiujuk(suj*"j) (Guk""k) *

3p.8p 6X: (du, +n, ) +
'ZHxlpka k* xxuk sy Y

H §x.6p, + U (du.,+n.) sp,] = 0 (4.42)
xixjpk Pk xiuppk 5757 °Px



Since H is linear in P;» the terms which contain second derivatives
of H with respect to p 4 Vvanish. Subtracting the deterministic
necessary condition, given in Equation (4.26), from Equation (4.42)
leads to the following expression

3 = Ry @ J"xu““ “xp -

1]

THxxx jk 2' xuuk(wwkkk)

uksxjauk s hyy

H"i"ijNJ'k - Hxiujpk(duj Gf;'k+fkj) (4.43)
where
Nij = E[ﬁxiépj] (4.44)
and
fij = E[Gpinj] (4.45)

It should be noted that for a given control Gui(t) and a
given sample of the noise process "i(t)’ the actual stochastic
Lagrange multipliers, 8p; (t), satisfy the differential equation



75

6p; = -Hxixj ij -HxiuJ (eu n )-H P GpJ -

1
6X.6 - -+n.) (du, + -
%Hx i%5% X50% ZHxiuJ.uk(GuJ "J)( Uytm)
Gx (6u +n,) - Gx 8 -
Hxixj k pk pk

pk(«Su j)<Spk (4.46)

Differential equations for Nij and f jj can be derived

in a mamner similar to the manner in which Equations (4.39) and (4.41)

were derived. The resulting expressions are

Mij T Fix N N kx u, (89P;*£550)
1ka - (&X; auk+h k) “k (4.47)
and
<. = - . - .- ~f.. B, . 4.48
fl] Hxixk j Hxiukkkj H,xipkka flkBkJ ( )

Finally, consider the expansion of the stochastic optimality
condition given in Equation (4.19) about the optimality condition of
the deterministic control problem, given in Equation (4.27). The

expansion can be written as follows



&
| E[H_  +H éx.+H (6u.+n.)+H sp. +

1 1

(6u.+n.) (su,+n,) + 8x.6x, +
7 H“iujuk j Y T T H“ixjxk %%k
2— . p GPJ ka % xJ 6X. (Guk""nk) +

Hugx;my 0Pk * B py (050 omd = 0 (4.49)
1]

*
Since H is linear in P;» and the deterministic quantity lﬂj

i
satisfies Equation (4.27), Equation (4.49) reduces to the following

expression

Hui x‘j ij muiuj Guj +Huipj cSpJ

1 + 1

su.su, +R H M.
uk(u o S t7 U XXy jk

H"ixj“k(ﬁj cuk+hjk) + Huixjpk Nig *
Huiujpk(auj cﬁk-ffkj) = 0 (4.50)

The set of Equations (4.35), (4.39), (4.41), (4.43), (4.47), (4.48),
and (4.50),describes the behavior of the first and second order moments
of the deviations of the state and Lagrange multipliers from their
respective deterministic values. The constraints which must be
satisfied at the initial and final times can be derived by expanding
the stochastic conditions at the end points, i.e., Equations (4.20),
(4.21), (4.22), (4.23), and (4.24), about their deterministic analogues,
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Equations (4.28), (4.29), (4.30), (4.31), and (4.32), respectively.
If the stochastic constraint given in Equation (4.20) is
expanded about the deterministic constraint given in Equation (4.28),

the following condition is obtained
6xi(t0) = 0 (4.51)

The expansion of the constraint given in Equation (4.21) about the

constraint given in Equation (4.29) leads to the condition
The stochastic condition given in Equation (4.22) can be expanded about

the deterministic condition given in Equation (4.30) in the following

manner
]
E[Xi (tf) + Gxi(tf) - Xif] = 0 (4:53)
* . % . & %
The term X; (tf) can be approximated by x; (tf ) + X; (tf-tf ).
By substituting this approximation into Equation (4.53), and sub-

tracting out the deterministic temms, the following constraint can

be derived
o % *  _ — _ 4

The expansion of Equation (4.23) about the deterministic condition

given in Equation (4.31) leads to the condition
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c'ﬁi(tf) = v, (4.55)
Finally, the condition given in Equation (4.24) can be

expanded about the deterministic solution given in Equation (4.32),

in the following manner

x
E[H (tf) + Hx.sxi(tf) + %’Hx.x 6x;6x. +
i

i J
sp, (to) + 8p; 6P; (su,+ +
HPi ittf 2' plpJ P\x
1
~2-Hu_u_(6ui+ni) (auj+nj) + Hx u axi(auj+nj) +

i) i’j

6x,6p; + H 5pi(6uj+nj)] = 0 (4.56)

iy, 5 15 Py

H'(t) can be approximated by H'(t) + H (tgt.), and Equation
(4.56) reduces to the following expression

i (e, pLA B 6%, (tg) + 7H xJMlJ(tf) +

Hpisii(tf) + uuj su, (tg) + %H“i“j (8u; (o (t )R (£0)) +
iuj(a'fi(tf)auj(tf) +hys(tp) + H , Ni;(tg)

By, fij(t) = 0 (4.57)

17

In theory, the stochastic optimality condition given in Equation
(4.50) can be solved for suj (t), ‘and the solution can be substituted

into the remaining differential equations in order to eliminate the
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control from the analysis. The differential equations, i.e.,
Equations (4.35), (4.39), (4.41),(4.43), (4.47), and (4.48),

then form 2[n+n2+nm] equations involving sfi, Gﬁi, M., N

hij’ and fij'

constraints given by Equations (4.54), (4.55), and (4.57), at the

J' b ij ]
These equations must satisfy the 2n+1 terminal

final time te, and must also satisfy the 2n conditions given
by Equations (4.51) and (4.52) at the initial time tye In
addition the equations must satisfy the following specified initial
conditions at t;

M;5(tos ) = M5

Ni;(tgs tg) = 0
his(tgs tg) = 0
£5(tgs tg) = 0 (4.58)

The set of differentiall equations and the end conditions form
a two point boundary value problem with split end conditions, which
can be solved by a number of existing numerical methods for the re-
maining unspecified end conditions §vy, 6u;, and G_f. (See Ref. 12)
The solution to the boundary value problem will theoretically yield
the optimal time histories of éi'i(t) and Gﬁi(t), from which the
optimal stochastic control deviation Guj (t) can be found. The
approximate solutions to the original stochastic necessary conditions

can be stated theoretically as follows
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Elx; ()] = x; (1) + 6%, (1)
Elp; ()] = p;(t) + &5, (1)
u(t) = uj*(t) + bu; (1) (4.59)

Application To The Space Guidance Problem

The results derived in the previous sections of this chapter
will now be applied to the low-thrust Earth-Mars transfer problem
studied in Chapter 3. It is seen from the curves at the end of
Chapter 3 that the standard deviations of the state associated
with a stochastic ensemble of randomly perturbed trajectories are in
general much larger than the respective mean deviations from the
deterministic trajectory. This is indicative of a dynamic system which
is not too highly nonlinear. In such systems, the optimal stochastic
control correction Gui(t), which corrects the deterministic control
in such a manner to take into account the expected effects of the
noise on the state, is expected to have a smaller effect on the
system than the noise itself. This leads to the assumption that the
control deviation derived previously in this chapter, is much smaller

than the standard deviation of the perturbing noise, i.e.,
6ui(t) < <oy i not summed (4.60)
The assumption given in Equation (4.60) will be incorporated into the

differential equations, when applied to the interplanetary transfer

problem, by neglecting all second order terms containing Gui(t),
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that is, by neglecting all terms containing the products Guisuj ’
6ui6xj , and Suidpj.

It should also be noted that the equations of motion of the
interplanetary transfer, i.e., Equations (3.28), fall into a class
of differential equations which can be separated into the follow-

ing form

A S R AR (4.61)

It also should be noted that the functional to be extremized,

I[u], which can be written as follows

Iul = E f 1dt (4.62)

falls into a class of functionals which can be written in the form
te
) 11
. %
The generalized Hamiltonian for a variational problem involving a
functional of the type given in Equation (4.63) and differential
equations of the type given in Equation (4.61) can be written in the

following manner

T

L ! 1
H = P; fi-fn"'l *p; fi' fn'!-l (4.64)

By grouping the terms in Equation (4.64) in a proper manner, the

generalized Hamiltonian, under the restrictions given in Equation
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(4.61) and (4.63), becomes separable in the state and control, i.e.,

Hef (x,t) + H (u,t)

(4.65)

Thus the cross partial derivatives of fi and H with respect to the

state and control vanish, i.e.,

ficu = O
Hxiuk = 0
Huixjxk =0
Huiujxk =0
Huxy =

(4.66)

In view of the assumption imposed by Equation (4.60) and the conditions

given by Equation (4.66), the differential equations to be applied to

the interplanetary transfer are the following

Gxi

Gpi
i
.ij
.ij

fij

- 1
fixj“j * fiuj““j * 7 fix.x

1

ik

1
Mjk t7 fiujukRjk

~ 1
- . - . -~ H M., - H N.
onxjcxj Ir&ipjspJ Z Txxax gk Uk 5Pk jk

1) J

" T MM ix * fin Mgt P

. . - N. +f.. £ -M., H
f ].XkaJ ik f kxj f iy kj ik XX

. . . . + h. .
f 1xkth *f iuy Rkj 1k8k3

- H h . - £f.-f
X X kj Hxip:j kj

ik Bxj

(4.67)
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with the optimality condition
Hy g 80+ By o 6p ¢ ZH y 0 Ry *H o f L g (4.68)
i% I WPy 3 i%Y% J i%Pk K y

Matrix formulations of the temms in Equations (4.67) and (4.68),
applied to the Earth-Mars transfer, appear in Appendix B. The
optimal corrective control, Sa(t), and the resulting mean state
deviations éu, év, 6T, and 68, have been computed for several cases,
and the results are illustrated in Figures 21 through 31. The plots
labeled a illustrate the time histories of the mean deviations of the
state from the deterministic trajectory. The plots labeled b show the
corrective optimal control é&a(t). &a is plotted in degrees.

The parameters of interest in the following respective figures

are:

For Figure 21, o, = .05T
Ta = 1 day
o, = 0
o = 0
For Figures 22 through 24, Ta ranges from 10 days to 1000 days
o, = .02T
c =0
a
op = 0
For Figure 25, g, = 1°
Ta = 1 day
o, = 0

= 0
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For Figures 26 through 29,

For Figures 30 through 31,

95

Ta ranges from 1 day to 1000 days

o, = L°
o, = 0
o9 = 0

o, ranges from 1 x 10°

.02T

3 3

to 2 x 10°

=
aa

T =

a 1 day

o =0
a

Several characteristics of the optimal stochastic control and re-

sulting mean trajectories can be seen in the figures.

The important

characteristics can be summarized as follows:

1. The optimal stochastic control angle d(t),

is approxi-

|
mately equal to the deterministic control angle o (t),

except in the region of rapid change of the control angle

%
a {t).

stochastic control a(t)

(See Figure A.2).

The figures show that the
lags slightly behind the deter-

*
ministic control « (t) during the region of rapid change.

2. In all cases the control deviation éa(t)

than the standard deviation of the perturbing noise.

is much less

This

characteristic adds some justification for neglecting the

second order terms containing the control correction éa(t).

3. The mean state deviations are seen to undergo peaks in the

*
region of rapid change in the control angle o (t). This

characteristic is a cansequence of the nature of the control

deviation, which also exhibits a peak in this region. It

should be pointed out that the mean states are controlled

so as to satisfy the same terminal constraints (rendezvous
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with Mars) as the deterministic state is controlled to
satisfy in Appendix A. For this reason the mean state
deviations do not all tend to zero at the terminal time.
For instance, at the time when the mean state satisfies
the terminal conditions, the deterministic state may have
not yet reached the terminal state computed in Appendjx A.
In this case, a nonzero 6§i(tf) will occur at the
final time.
The effect of noise on the final time is illustrated in Figure 32,
where the final time deviation is plotted versus the standard
deviations of the noise. It is seen that for noise occurring in
the thrust orientation angle a*(t) , the final time increases with
increasing standard deviation of the noise. For noise occurring in
the thrust/mass magnitude, the final time decreases with increasing
standard deviation of the noise. However, the change in final time
for noise in the thrust/mass magnitude is very slight.
The optimal control developed in this chapter appears to have
the properties which are desired of a control which must gﬁide a
dynamic system in the presence of noise. Loosely speaking, the
stochastic control developed here guides the mean of the ensemble of
stochastic trajectories to the temminal conditions, while extremizing
the expected value of a performance index functional of the type
given in Equation (4.2). It should be noted that although the non-
random control developed here does the 'best" job possible in an

average, or expected value, sense. The standard deviations of the
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state at the final time are not appreciable smaller than they were

in the case of the deterministic control. This indicates that in order
to achieve a creditable degree of state accuracy at the final time,
some information about the perturbations which actually occur must be
utilized by the controller to update the control during the controlling

interval.



CHAPTER 5
OPTIMAL STOCHASTIC CONTROL CONDITIONED
ON DISCRETE OBSERVATIONS OF THE PROCESS

Introduction

In Chapter 4 the optimal stochastic control problem was solved
by obtaining the conditions necessary for the functional givep in
Equation (4.9), i.e.,

te
J[u] = EI}i(xi(tf)-xif)wi(xi(to) X0t f fn+1(x,u,t)+pi(ii-fi) dt]
to (5.1)
to be an extremum, where the expected value of the functional is defined

as follows

E(-) =Jr...f () f(§,n(t1),n(t2),...)dsdn(tlj.., (5.2)

The function f£(5 ’"(tl)’ n(tz),...) is the joint probability density
function of the entire noise process "i(t) in the region toititf
and the initial state uncertainty errors 8> i=1, ..., n. The

necessary conditions take the following fomm
E(pimxi] = 0 (5.3)
EH ] = 0
[H“i
at each point of time in the controlling interval tost<t.,
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Elx; (5g)] = x5

E[pi(to)] =W (5.4)
at the initial time ), and

Elx;(tg] = x;¢

Elp,(t)] = -v;

E[H(ty)] = 0 (5.5)

at the temminal time t £

The optimal control, which is derived as a solution to Equations
(5.3) with end conditions given by Equations (5.4) and (5.5), could
be called an expected value, or "mean' value control, since this control pro-
cedure drives the expected value of a stochastic ensemble of trajectories
to satisfy the deterministic end conditions and, in so doing,
extremizes the expected value of some performance index functional.
The optimal stochastic control procedure developed in Chapter 4 is
better than the optimal deteministic control procedure derived in
Appendix A in the sense that an average over a stochastic ensemble is
controlled, rather than a deteministic idealization. However, the
noise in general has a far greater effect on the dynamic system than
that which can be compensated for by any control program based on a
priori noise statistics. This is illustrated in Figures 5 through 18
at the end of Chapter 3, where it is seen that in general the standard
deviations are much larger than the corresponding mean deviations. It
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should alse be noted that the Monte Carlo simulated trajectory
illustrated in Figure 19, exhibits state deviations which are much
greater than the corresponding mean deviations shown in Figure 7A.
Since the expected, or mean, deviations are used as a basis for
deriving the optimal control in Chapter 4, (i.e., the control
essentially guides the mean), it can be concluded that, in general,
tl;e implementation of a nonrandom control based on a priori
statistics of the noise process will not insure that the terminal
constraints will be met satisfactorily.

This chapter is devoted to the derivation of an optimal
stochastic control which incorporates information gained during the
controlling interval into the control program. The information about
the process is in the form of observations of some function of the
state, which are made at discrete points in tiine, and which are
available to the controller with no time lag. The control is
essentially designed to guide the expected value of the state,
conditioned on the observations, fo satisfy original terminal constraints,
while extremizing the conditional mean of the original performance
index functional I[u].

‘Suppose there exists a multidimensional function of the state
of the dynamic system

z;, = gi(x,t) i=1, ..., p (5.6)

where p<n. In addition, suppose that the controller has available
sample values of the function



Yi(t) = gi(x,t) + Ei(t) (5.7)

at discrete instances of time t5, t,, tz, ey s oo tN’ where
si(tk) is a normal random observation error with the following a

priori statistics

E[ei(tk)] = 0 k=1,2,...N (5.8)
Ele; (t)e;(t)] = 035° 6, (5.9
Ele;(ty) 6x;(t,)] = 0 (5.10)

The optimal stochastic control procedure in the presence of these
"'observations' can be updated or corrected after each particular

observation is made available to the controller.

Theoretical Development

A method for updating the optimal stochastic program after
an observation value is made available to the controller is presented
in the following presentation. Consider the case in which k
observations have been made at times tl’ t eees and ts
respectively, and the controller has updated the control program at
the times tys tyy cees G g in accordance with the information
gained by the previous observations. The optimal control for the
time segment tst<ty,;» where t, .. is the time of the next obser-
vation, can be found by extremizing the functional

Ju] = E[‘)i(xi(tf)-xif) + “i(xi(tk) - ;tl(tk)) +
(5.11)

tf
[fn+1¢i(ii-fi)dt Y(tk) ’ Y(tk-l) s seey Y(tl)]
Y%
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“where
E[(-) lyctk),y(tk_l),...] - f f (*)F(5,n,e

and J‘Ei (tk) is the conditional mean of xi(tk) given the values of

y(tk) yee+)dSdnde
| (5.12)

the observations made at t1s Toseee, ts i.e.,

;(i(t'k) = E[xi(tk) I Y, y(te_1)s---s y(tl)] (5.13)

The function f£(§,n,e

y(tk'), y(tk_l),...) is the joint conditional
probability density function of the noise process ni(t) , the initial
uncertainty errors § i’ and the observation errors €.

By carrying out the variation of the functional given in Equation
(5.11) in the same manner as the variation of the functional was carried
out in Chapter 4, the following set of necessary conditions can be .

obtained

Blki-f; | y(50, vty )] = 0

[
(=]

Blbg | Y80, Yl peeo)

B, | y(t) vty p)sen] = 0 (5.14)
i
at all points of time in the controlling interval tof_titf,

;‘i (t,)

E[xi(tk) l Y(tk) seoel

Blpy(ty) | y(gd,eel = (5.15)
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at the observation time t, and

Elx;(t) | y(t),...]

E[Pi(tf) l Y(tk) yees] = vy
E[H(tf) l Y(tk),...] = 0 (5.16)

at the final time te.
It should be noted that although the control for the interval
Y St<ty 1> which is based on the values of the observations made at
tl, tys ooey tk’ is computed under the assumption that it will drive
the conditional mean state to thé terminal conditions, specified by
Equation (5.16), the control procedure will actually be replaced by
an updated control procedure after each new observation is made
available to the controller. For instance, at the time of the next
observation tee1 the control for the interval tee1St<ty,, Wwill be
computed on the basis of the values of the observations made at t

tz,o.o, tk, tk*1°
The conditional necessary conditions given by Equations (5.14),

1’

can be expanded about the optimal deterministic solution given by
Equations (4.25), (4.26), and (4.27), to obtain the set of differential
equations which describe the behavior of the first and second moments
of the state and Lagrange multiplier deviations, They at€ rasnfdlbows

= - — 1
i T Fixg 50T iuj(““j*“j) "7 T Mkt

%‘f iujuk(éuj cuk+5uj Kkﬁj suy +Rjk) + fixjuk (si'j Guk*h’j k) (5.17)
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&p; = -H 6X, - (6u.+n.) - H 6p. -
i X%, J Hxiuj i3 Xp; ]
1 - -
H xk _)k 2- x Juk(‘mj‘sukﬂsuj"k""jsukmjk) -
(Gx 8 - H N.
Hx X5 J“k uk xixjpk jk
Heup, (su. B, + £,.) (5.18)
i%Pk j Pk kj
M:i.j = Mk] Jxk 1uk (Gukax *h, k) *
(6%; we+hy) fjuk (5.19)
Mj = i Mg o Nik fioc, * Fiu (S058P5*£500
- My kaxj B (Gk—iauk"hik) ijuk (5.20)
hyy = f ix Mg * Fiw (G5 *Res) - hyydy (.21)

£y = - . hy; - Hxiuk (Suyn;+Ry5) - H’&Pk by (5.22)

Fugeg 5 * Fagu, (005995 + By p, 6P

1 :
Vi %iujuk (Gujsuk+nj6uk+6ujnk + Rjk) +
1 —

M., + (éx,8u, + h.,) +
THuixjxk jk I'k.xixjv.;k %% * Mk

%xka jk Hu pk(du oy + ka =0 (5.23)
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where

t> tk
1) = Bl | (), vt -] (5.24)

The following definitions were used in the preceding expressions

Mij = E[Gxicxj Iy(tk),...] (5.25)
hy = Bloxp | y(g,...] (5.26)
Njj = Eléx;p; |y(tk), (5.27)
£;5 = Elopyn; Iy(tk),...] (5.28)
Ry = Elngny | y(ty,enn] (5.29)

If the conditional expected terminal constraints, i.e., Equations
(5.16), are expanded about the deterministic terminal conditions, i.e.,
Equations (4.30), (4.31), and (4.32), the following expressions

relating Gii(th, cﬁi(tf), su, (to) and si% are derived.

ii*(tf*) 5Ty + 6K (t) = 0 (5.30)
sﬁi(tf) = -8, (5.31)
f'l*(tf*) 8t + I-&im_(i + M1J H 16p +
Hu (su,+n.) + %Hul J(<Su GuJ su, n +5u - +R.LJ
xluj (6x16u3+h13) H, iP5 13 by J(Gp 6u +f, ) = 0 (5.32)
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The initial conditions at the time tk for the variables in
Equations (5.17) through (5.23) can be listed in the following

manner
E[6x; (1) [y(t),...] = 6x;(ty)
El6p; (t) [y(t),...] = &p;(ty)
Elng(ty) [ytseea] = ny(t)

Elex;ox; [y(t),...] = My;(t)

E[axispj

¥t ] = N
Elngn | y(t,] = Ry

Bloxng | yt),eea] = Byt

=y

Efsp;n; 'y(tk).---I = 5 (5.33)
where the quantities on the right hand side of Equations (5.33) are
conditional mean values, which are computed on the basis of the

observations made at times tyseees b that is,
() = El() |y, vyt Dyl (5.34)

Once the initial conditions, i.e., the quantities on the right hand
side of Equations (5.33) are computed on the basis of the obser-
vations yi(tl),..;, yk(tk), Equations (5.17) through (5.23) form a
two-point boundary value problem with split end conditions at the

terminal time t £ and the observation time t- The boundary value
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problem can be solved for the corrected values of 8p; (tk) =6y ,
which deétemmine the updated optimal control program, and the
corrected value of the terminal time deviation §t.

It should be noted that the quantities Rij and -"-j
in the differential equations are determined throughout the
controlling interval tkitg_tf in terms of ﬁij (tk) and ;;j (tk)
by the following generalizations of Equations (2.20) and (2.19)
respectively.

-Blj (t'tk)

2 5 2 . .
Rij (t) = %3 + [Rij (tk)-r.rij ] e i,j not summed

-Bss(t-t, ).
5 (e (5.35)

n = e

The corrective control program, initiated at the observation
time ty, is designed to guide the conditional mean of the ensemble
of stochastic trajectories, given the observation values Y (tk) ’ yi(tk_l) ,
yi(tl), to the terminal constraints. It is assumed that at the
time of the last observation ty.1 @ control was initiated on the
basis of’the'observations made up to that time, i.e., yi(tk_l),
yi(tk_z),..., yi(tl) » and that the conditional means of the process,
based on that control program, are available to the controller at -
Thus the controller has available the following quantities, prior to

the observation at tk
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E[sx; (t,) l y(te )51 8x; (t)

BIsp; (t) | y(tp)senn] = B30t

E[ni(tk) Y(tk-l) yeool -'Ti(tk)

E[Gxisxj y(tk_l),...] = Mij(tk)

E [Gxitsp .

j Y(tk-l)"';] = Nij(tk)

E["i"j l Y(tk-l)""] = Rij (tk)
E[Gxinj l )'(tk_l),...] = hij(tk)

E =N cee} = .
lpgn; | ¥(te e = £5050 5.56
where the bar designates the conditional expected value at the time t

given the values of the observations made prior to t, i.e. ,
“(t) = E[-(v) Y(tk_l) ’ )’(tk_z)---] L1 <t<ty (5.37)

The remaining task is the developing of a technique for computing the
initial conditions for the boundary value problem given in Equations
(5.33) in terms of the observation values yi(tk), yi(tk-l) seees
y(tl) » and the previously computed conditional moments given in
Equations (5.36).

In order to simplify the notation, define the 2n+m dimensional
generalized state deviatiqm variable 6y i(t:), the (2n+m)2 dimensional

generalized second moment M.

ijo and the generalized covariance Py

j ’
in the following manner



Gxi = sxi , i=1, ..., n
8x; = 8P; ¢ , i=n+l, ..., 2n
6xi = Ni.2n s i=2n+l, ..., 2ntm

Mij = E[Gxi ij]
Pij = E[(Gxi'ﬁxi) (5Xj‘5Xj)]

(5.38)

It should be noted that cxi(tk) and the observations yi(tk) ,

yi(tk_l) > e ¥y (tl) are jointly distributed random variables which
possess some joint probability density function. It is recognized
that Gxi(tk) is some function of yi(tk), yi(tk_l), cees yi(tl)’
that is to say

ox; () = G;ly(t), y(ty ), ... (5.39)

In order to determine the function Gi’ Equation (5.39) will -
be expanded about the deterministic value of yi(tk) i.e.,

* _ ®
i () = gx,t) (5.40)

The expansion will be carried out to include only linear temms in
yi(tk) , that is, quadratic and higher order terms will be neglected
in the analysis. The expansion can be expressed in the following

manner
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ox; () = Gily (8, y(t_),een] +

Giyj(y*(tk). Yt 1)se-) [yj(tk)—yj*(tk)] (5.41)

where

The coefficients G; and Giyj can be determined in temms of the
known quantities given in Equations (5.36) and covariance components
of the observation error » ijz with the aid of the following theorem
from probability theory. The theorem, which is proved in Appendix

D, can be stated in the following manner
BIFO/(5)) 6x;(8) | vty ), vty p),enn] =
E[}F(y(tk))ﬁ(sxi(tk) | y(55.- 01 | y(t 1> Y(tk-z)’--j]

(5.42)

Consider an application of the theorem given in Equation (5.42) for
the case in which F(y(tk)) = 1. For this special case, the theorem

can be stated in the following manner

Elox; () | y(tp)se-e] = E[ECGox;(t) | y(tk)...)ly(tk_l)...l
(5.43)

If the expression given in Equation (5.41) is substituted into the

right side of Equation (5.43), the following result is obtained

E lﬁxi(tk) Y(tk-l) ...] = E E;i*Giyj (YJ (tk) "Yj*(tk)) Y(tk-l) seee ]
(5.44)
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Equation (5.44) reduces to the following expression

() = G+ Giy5[§5(tk)-y5*(tk)] (5.45)

By substituting the result obtained in Equation (5.45) back into

Equation (5.41), the following expression for 6x;(t,) is obtained
xi(h) = 8t *+ Gy () F;(t]  (5.46)
j

Now consider an application of the theorem given in Equation (5.42) in
3 * - 3
which F(y(tk)) = yk(tk) Yk (tk) = syk(tk) . For this special case,

Equation (5.42) can be stated in the following mammer
Elsy, () 6x; (8 [y (5. p) -] =

- I
E [[syk(tk) E(sx; (1) [y (8] [yt ]
(5.47)

If the expression given in Equation (5.46) is substituted into the
right side of Equation (5.47), the following result is obtained

E[GYRGXi Y(tk-l] ceo]m G?kts;l +
Giyjﬁlﬁyk(rj-yj) y(te 1),...] (5.48)

By rearranging the terms in Equation (5.48), the following expression

is obtained
B[y -89 (6%;-6%) | vty ).l =

Gy ELE,-65,) (-7 | vt (5.49)
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where
®

i = YV
In order to fornulate the terms involving 8y 5 in Equation
(5.49), in terms of known quantities, consider an expansion of
®
Equation (5.7) about the deterministic value of the state X; .

The expansion can be written as follows

*
g

9X. j
j J

® ®
Gyi"')'i (t) = gi(x ,t) +

2*
128

Z--a-xj—ai; ijﬁxk + ... + € (5.50)

i
By subtracting out Equation (5.6) from the expression given in
Equation (5.50), and by using the following notation, i.e.,

* 2 %

3X. gix. axj Xy = gixjxk

(5.51)

the expansion given in Equation (5.50) can be written as follows

- 1

Equation (5.52) can be written in termms of the generalized state

deviations §x; as follows

- 1
§y; = gixjéxj t 7 ginXk §xj6xk *eg (5.53)

with the restriction that
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gixj=0 ’ j>n

gixjxk =0 . j>n or k>n (5.54)

The expected value of 8y; can be expressed as follows

- - .1
. o= g, &Y. . . 5.55
8y; glxjﬁxJ ty glxjxk My (5.55)

By substituting Equation (5.53) and Equation (5.55) into the Equation
(5.49), and neglecting terms in 8x3 of higher order than the second,

the following expression is derived,

By, ELOx6%,) (0 -6%5%e) | vty )] =

j
PN (CRU RN CRLALS | Yty )] l

Now by recalling Equations (5.8), (5.9), and (5.10), i.e., that

Ele; ()] = 0

Ele; (t)e; (6] = o5

Ee; (5)6x;(t)] = 0

the expected value operation can be carried out in Equation (5.56),

and the following result is obtained

2
. = G, ., Py #py 7] 5.57
Pljgkxj Gl)’j [gkngjxm wm °kj ] ( )
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In order to solve for the coefficient Giy » the quantity B, ;
| j
is defined by the following expression

2 =
Pyt 1 By = 6y (5.58)

(g, 8
kx;~2x;

By multiplying Equation (5.57) by the quantity Bkn’ the follow-
ing result is obtained

- = G, .. = G, 5.59
P ljgkxj B‘kn GJ.)r:i 6Jn Gl)'n ( )

Substitution of the expression for G » given in Equation (5.59),

iyn
into the expression for 8x3 (t), given in Equation (5.46), leads to

the following result,
sx; () = ex(t) ¢+ Pigfiy, B 1875 (5067551 (5.60)

where s?j is defined in Equation (5.55).

Equation (5.60) relates the conditional mean of the generalized
state deviation, given the observations yi(tk) , yi(tk_l) ,+++ to the
known conditional mean of the state deviation, given the previous
observations y(tk_l) , y(tk_z) , «+. and the observation deviation
value 8y; (tk) . It is.interesting to note that the previous obser-
vation values cyi(tk_l), syi(tk_z), Gyi(tl) are not contained
explicitly in Equation (5.60), but are implicitly contained in the

value of s'ii ().



The components of 6; i(tk) break down into the components
of &x,(t,), ép;(t), and n;(t,), as shown in the definitions
given in Equations (5.38). The remainder of the quantities
given in Equations (5.33), i.e., Mij’ Nij’ hij’ fij T
can be computed with equations derived in the following discussion.
Consider the identity

, and Ri

BL(6x3-6x;) (6x;-6%7) | ¥(ty_p)een] =
E[(6x;-6%5) (6x576%5) | ¥(ty 1) o] (5.61)

Substitution of Equation (5.60) into the right hand side of Equation
(5.61) 1leads to the following expression

By

E[(Gxi~6ii)(6xj-6ij) i Y(tk-lj---l =
B[ (ox;-6%;) (6x;-6%;) | ¥(ty_p)---1 -

B3 6102 81 B (87T | vt -
B3 6% B4 By (V87 | (g pee1 +

TN T MUMCAUAT FCINES
(5.62)

By substituting Equations (5.53) and (5.60) into Equation (5.62), the
following expression can be obtained,

BL(ox5-xg) (6x3-6%5) | ¥ty p)ove] =

Pij Pislky, Prnfmy Fin (5.63)
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Consider for a moment the correlation between the error in the

conditional mean and the observation deviation, i.e.,

E[(Gxi-ﬁ;i) (‘SYj) l Y(tk_l) eee] =

E[(8x;-6x;) (Gyj) l vt -1 - Pi,gkszm E[(Gym-éfm)éyj y(ty -]

(5.64)

After carrying out the expected value operation, Equation (5.64)
reduces to

PisBix, Piskiy, O = O (5.65)

It is seen from Equation (5.65) that the error in the conditional mean,
(Gxi(tk)-sii(tk)) is uncorrelated through the second order with the
observation 8y; (). It will be assumed that this lack of correlation
is sufficient to imply that the following identity is valid to second
order

E[(6x;-6x;) (6x;6x3) | (), ¥(t_1),een ¥t =

EL(6x;-6%;) (6%:-6%:) | y(te_1)s ¥(ty o)y «ev y(t)]  (5.66)
170%;) (8x5-8x; %1 Yy, 1

By incorporating Equation (5.65) into Equation (5.63), the following

expression for the corrected generalized covariance is obtained
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The generalized second moment from the deterministic trajectory is

derived from the following expression

Mgt = Pyt - ox;(h) 6x;(ty) (5.68)
The components of ;!ij can be broken down into the quantities
ij, Nij, hij’ fij, alld Rijo

Equations (5.60) and (5.68) yield the conditional means and
second moments which are used as initial conditions in the two-
point boundary value problem. The solution to this problem will
yield the corrected optimal stochastic control for the interval
et <t This corrected control could be called a
"conditional mean" control, since the control essentially guides the
conditior;al mean, given a set of observations, to satisfy the original
deterministic terminal constraints and, in so doing, extremizes the
conditional mean of the performance index functional.

Since the equation which updates the conditional mean at the
time of observation t,, i.e., Equation (5.60), contains explicitly
only the value of the present observation Y (tk) » the scheme can

be used recursively at all of the observation times tl, tz, cees t’N
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Application To The Earth-Mars Transfer Problem

The results of this chapter will now be applied to the Earth-
Mars transfer problem. Since for this application the Hamiltonian
H(x,u,p,t) and the function fi(x,u,t) are both separable in the
state and control, the conditional differential equations, given
in Equations (5.17) and (5.18), and the conditional optimality
condition, i.e., Equation (5.23), reduce to the following system of
equations

C - —y .1
8xp = Fix 5% * fiuj(““j"“j) "zfixjkajk

J
1 1u (8u. suk+6u ”k + 7. Guk+
3%
. = -H 6, - H__ ép. - 7 H M., -
i XiX5" ] iP5 ) Z X% Xy jk
H (5.69)
X;X5Py Jk
Huiu (6u n)+H f%uuk(sucuk

+ sujnk + njsuk *Rjk) + Huiujpk(cuj spk+fjk) = 0

It is shown in Appendix E that the generalized covariance Pij

obeys the following differential equation

e



where rij

is a (2n+m)

2

the fbllqﬁing relations

I‘ij

Ti;
rij

= #i-2n j-mn

Cde pde Cde i

[ 5

1l,...,n
1,..., n
1,...n
n+l,..., 2n

1,..., n
2n+l,..., 2n+m

n+tl, ..., 2n
1, ..., n

ntl, ..., 2n
n+l, ..., 2n

n+l, ..., 2n
2n+l, ..., 2n+m

2n+l,..., 2n+m
1, ..., n

2n+l, ..., 2n+m
n+l, ..., 2n

2n+l,..., 2n+m
2n+l, ..., 2n*m

dimensional quantity which is defined by

(5.71)

It is therefore convenient to integrate Equation (5.70) instead of

the set of Equations (5.19), (5.20), (5.21), and (5.22), and then

obtain the quantities Mij,

time from the relation

Mij

P.. +

and fij’ at each point in

6% ; 6

J
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Matrix formulations of the terms in Equations (5.69) and (5.70),
for the example problem considered here, are given in Appendix B.

For the Earth-Mars transfer problem, the observational
information is in the form of the time rate of change of the position
vector of the spacecraft relative to the Earth. The values of this
observable, referred to here as range rate, are available to the
controller at discrete points in time. Assuming that the Earth moves
in a circular orbit about the Sun, the distance from the Earth to
the spacecraft is defined by the following expression

3

2,02 K
p = [r"+R -Zchos(e-m(t-to))] (5.72)

where R is the orbital radius of the Earth, and « is the angular
velocity of the Earth about the Sun. The rate of change of the Earth-
spacecraft distance is accordingly defined by the following expression

. Tu-Rucos(e-u(t-ty)) + rR(-‘l-{- -w)sin(8-u(t-t,))
p

[o]

(5.73)

The function Z; in Equation (5.6), becomes the scalar variable p
for the Earth-Mars transfer problem. Thus the scalar observation

y(t,) is given by the following relation
y(t) = a(t) + e(ty) (5.74)

where
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E[e(tk)] = 0

Ele(tp?] = o2 (5.75)
Equations (5.55), (5.60), and (5.67), are applied ot the inter-
planetary transfer problem so that the control can be updated at the
observation times. Matrix formulations of the terms in these equations
are given in Appendix B.

The corrective control scheme, based on range-rate observations
made at discrete points in time, is applied to two Monte Carlo
simulated trajectories. The first fmjectory considered is the
example trajectory presented in Chapter 3, Figure 19. The parameters
of interest for the stochastic trajectory are o_ = ,0ST,

a
T, = 1 day, o,= 0, and og = 0. The time histories of the
mean state deviations and the standard deviations of an ensemble of
trajectories possessing the preceding noise parameters are shown in
Chapter 3, Figure 7. The a priori optimal étochastic control program,
which is computed in the absence of any observational information,
and the resulting optimal mean state deviatiqns for the same ensemble
of trajectories is shown in Chapter 4, Figure 21.

A series of observation-correction operations are made on the
trajectory in Figure 19, and the results are presented in Figure 33.
The standard deviation of the error in each observation is assumed
to be 107V, where V

E
the steps of the recursive observation-correction scheme, with

is the velocity of the Earth. An outline of

appropriate referrals to the figures and discussions of the interesting

charact_eristics of the results, is given in the subsequent presentation.




a.

123

An observation is made 30 days after the time of initiation
of the transfer. The conditional mean state deviations,
given the observation, are illustrated in Figure 33a.
Discontinuities occur in the curves at the time of obser-
vation and indicate the change from a priori mean state
deviations to conditional mean state deviations. Note

that no control correction has been made.

The conditional standard deviations of the state components,
given the observation, are given in Figure 33b. Note the
discontinuity at the time the observation is made. A
comparison of Figure 33b with Figure 7b in Chapter 3 shows
that the standard deviations are smaller after the obser-
vation is made, than the corresponding standard deviations
in the case in which no observation is made. The smaller
standard deviation indicates the controller's increased
knowledge of the actual state history in the time interval
after the observation.

A control correction is made on the basis of the observation
value, and the resulting mean deviations are illustrated in
Figure 33c. Note the peaks in the mean deviations at the
time of rapid change of the thrust direction angle a(t).
The optimal control deviation is illustrated in Figure 33d.
Note the discontinuity at the time of the observation, and
the peak at the time of rapid change in the thrust direction
angle.

The resulting state deviations of the sample trajectory are

presented in Figure 33e. It can be seen, by comparing the
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state deviations in Figure 33e with those of the um-
corrected trajectory in Figure 19, that the terminal constraints
are met more accurately in the case where the control correction
is performed.

Another observation is made at t = 60 days, and the
resulting conditional mean deviations are presented in
Figure 33f. From a comparison of the conditional mean
deviations with the actual deviations in Figure 33e, it

can be seen that the conditional mean deviations approxi-
mate the sample state deviations much more accurately, after
two observations are made, than in the previous case.

The standard deviations of the state components are given in
Figure 33g.

A control correction is made and the resulting mean state
deviations are presented in Figure 33h.

The updated control deviation appears in Figure 33i.

The resulting state deviations of the sample trajectory
are presented in Figure 33j. Note how the simulated state
deviation components follow paths which are similar to the
conditional mean state deviation values, shown in Figure
33h. It should also be noted that the conditional mean
deviations are always controlled to meet the terminal
constraints. For this reason, an indication as to how well
the updated control program is performing, is how close the
actual simulated trajectory state deviations are to the

conditional mean deviations.
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A third observation is made at t = 90 days, and the
conditional means are given in Figure 33k. Note that the
corrections in the conditional means at the third obser-
vation time are small in comparison to previous corrections.
This is because the conditional mean deviations approximate
the actual state deviations more closely than before
observations were taken.

The updated standard deviations are presented in Figure 331.
The mean state deviations for the third control correction
appear in Figure 33m.

The third corrective control deviation appears in Figure 33n.
The resulting sample state deviations for the third control
correction appear in Figure 33o.

In order to make a precise comparison of the conditional
mean state deviations to the actual sample state deviations,
for the case of three observations, Figure 33m is super-
imposed on Figure 330. The superposition of the velocity
deviations is presented in Figure 33p. Note that as each
new observation is made available to the controller, the
updated conditional mean deviations, which are computed on
the basis of the most recent observation value, are closer
to the sample state deviations than the previous conditional
mean deviations.

The superposition of the position deviations is presented
in Figure 33q.

In order to demonstrate the effectiveness of the preced-

ing observation-correction scheme at increasing the terminal
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accuracy of the sample trajectory, the norm of the standard

and ¢ g» 3t the terminal

time te, and the norm of the sample miss components

deviation components Gy Oy Ops
Su-éu, 8v-6v, 6r-6r, and 66-66, at the terminal time
are plotted as a function of the mumber of observations.
The results are shown in Figure 33r. The nomm of the terminal

standard deviations is defined in the following equation.

|
o] - Jau(tf)z + ov(tf)z + Ur(tf)z + Ua(tf)z (5.76)

le| could be called the "expected root square miss". The
norm of the terminal sample miss components is defined

in the following equation.

2 2 2 2
|lax| = / [eu(tg)-su(te)] + [6v(tp)-sv(tg)] + [6r(te)-oT(t))] +[s6(ty)-s0(ty)]

(5.77)

|ax| could be called the "sample root square miss".

Both the expected root square miss and the sample root sqfixare
miss are seen to decrease as a consequence of each additional
observation. This indicates that the preceding sequence of
observation-correction operations appears to be guiding the
actual sample state closer to satisfying the terminal constraints

as more observations and control corrections are made.
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In order to illustrate the sensitivity of the preceding

method of updating an optimal stochastic control program to the times
at which the observations are taken, the same sample trajectory
illustrated in Figure 19 is used for making single observation-
correction operations at later times in the controlling interval. In
particular, a single observation with an error standard deviation of
10-3Vé is taken at t = 60 days, with the results given in Figure 34,
and a single observation is taken at t = 120 days, with the results

given in Figure 35. An outline of the results is given in the

subsequent presentation.

For Figure 34,
a. The initial observation is made at t = 60 days. The
conditional state mean deviations are given in Figure 34a.
b. The updated standard deviations are given in Figure 34b.
Cc. A control correction is made and the corrected mean state
deviations are given in Figure 34c.

d. The corrected control deviation is given in Figure 34d.

For Figure 35,
a. The initial observation is made at t = 120 days. The
conditional mean state deviations are given in Figure 35a.
b. The updated standard deviations are given in Figure 35b.
c. A control correction is made and the corrected mean state
deviations are given in,Figure 35c°

d. The corrected control deviation is given in Figure 35d.
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The results shown in Figure 34 and Figure 35 indicate first that
the conditional mean state deviations which are derived from observations
taken late in the controlling interval accurately predict the actual
state deviations, but also that the control corrections, along with the
resulting mean state deviations, are quite large. See Figures 35c and
35d.

In order to illustrate the performance of the preceding corrective
control procedure on a trajectory which is perturbed by highly correlated
noise, the corrective control scheme is applied to a second Monte Carlo
simulated trajectory, and the results are presented in Figure 36. The
parameters of interest for the trajectory are g, = 05T, T a = 1000 days,
o, =0, and oy = 0. An outline of the results is presented in the
subsequent presentation.

a. The sample state deviations which were simulated with the

preceding set of noise parameters are presented in Figure
36a.

b. The highly correlated sample noise n a’ which occurs in the

thrust/mass magnitude, is presented in Figure 36b.
c. The standard deviations associated with the preceding
noise parameters are presented in Figure 35c.

d. An observation is made at t = 60 days, and the resulting
conditional mean state deviations are given in Figure 36d.
Note that o_ = 10-3VE.

e. The updated standard deviations of the state are presented

in Figure 36e.

f. The resulting conditional mean of the noise is given in

Figure 36f.
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g. The updated standard deviation of the noise is presented

in Figure 36g.

h. A control correction is made, and the resulting mean

state deviations are given in Figure 36h.

i. The corrected control deviation is presented in Figure 36i.

j. The sample corrected state deviations appear in Figure 36j.

k. A superposition of Figures 36i and 36j is made in order

to illustrate the effectiveness of the corrected mean state
deviations at approximating the corrected sample state deviations.
The superposition of the velocity components of the state is
given in Figure 36k.

1. The superposition of the position components of the state

is given in Figure 361.

The power of the observation process is illustrated in Figure 37.
Observations are made every 30 days on a trajectory with the noise
parameters o, = .02T, T, = 1 day, 0, =0, 04 = 3x10™5, The sequence of
Figures 37a through 37g illustrate how the series of recursive observations
forces the standard deviations of the state to lesser and lesser values.
Note that o_ = 1073 Vg.

The sensitivity of the observation process to the observation
accuracy is illustrated in Figure 38. The parameters of the trajectory
are o, = .05T, Ta = 1 day, o, = o, oy = 0. Observations are made every

60 days with the following standard deviatiors of the observation error.
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For Figure 38a, o, = 0
For Figure 38b, o, = 1073
For Figure 38c, o = 1072

The standard deviations of the state components are presented in the
figures. It is seen that the standard deviations of the state components

vary directly with the standard deviation of the observation error O
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CHAPTER 6
CONCLUSIONS AND EXTENSIONS TO THE WORK

Summary

In the investigation présented here, the problem of the optimal
control of a nonlinear dynamic system in the presence of noise is
studied. In particular, the investigation is concemed with continuous
autocorrelated noise which perturbs the controls of the dynamic system.

A study is made of the effects of noise in the controls on an
optimal determministic trajectory. The effects are illustrated for a
similated study of a low-thrust spacecraft on a minimum time Earth-to-
Mars transfer trajectory. The characteristics of the effects of the
noise illustrated in the study indicate the necessity for developing
an optimal stochastic control. The control procedure developed in the
investigation is a nonrandom function of time, based on a priori know-
ledge of the statistical behavior of the noise process, and is designed
to anticipate the expected effects of the noise on the dynamic system.

A stochastic calculus of variations approach is employed to determine

the control procedure for the stochastic system. The control essentially

guides the expected value of the state to meet the temminal conditions,
while extremizing the expected value of the original deterministic per-
formance index functional. The behavior of the control procedure is
studied for a simulated interplanetary transfer problem.

The results of the study indicate the necessity for presenting
a scheme which will correct the control program, on the basis of infor-
mation gained during the controlling interval, so that the actual state

comes closer to satisfying the teminal constraints, while preserving
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the optimal nature of the control program. A method is presented for
replacing the mean values of the state components and the Lagrange
multipliers, with which the a priori control is computed, with
conditional mean values of these quantities based on the values of state
observations. The scheme is applied te the interplanetary transfer
problem for the case where range-rate observations are taken at discrete
instances of time.

Conclusions

From the study in Chapter 3 of the effects of noise on a non-

linear dynamic system, the following conclusions can be drawn:

1. Both the theory and the numerical studies of the inter-
planetary problem show that the occurrence of noise in a
nonlinear dynamic system implies an ensemble of stochastic
trajectories. The analysis shows that the mean of the ensemble
differs from the detemministic trajectory.

2. In general the standard deviations of the state components
increase with time indefinitely. However, the nonlinearity
of the system and the optimal nature of the control strongly
influence the values of the standard deviations.

3. The statistics of the ensemble of trajectories are highly
dependent on both the variance and the correlation time
associated with the perturbing noise. In general, the mean
state deviations from the detemministic trajectory and the
standard deviations both increase with increasing noise
variance and/or increasing noise correlation time.

4. The results of the numerical studies on the interplanetary

transfer problem show that the statistics of the ensemble of



165

trajectories for the case in which noise occurs in the
thrust magnitude and for the case in which noise occurs in

the thrust direction are quite different.

Study of the application of the optimal stochastic control to the

interplanetary transfer problem in Chapter 4 has led to the.follawing

conclusions:

1.

In the case of the interplanetary transfer problem the difference
between the a priori optimal stochastic control and the optimal
deteministic control is small in comparison with the perturbing
noise. It should be noted that this may not be the case for
highly nonlinear dynamic systems.

In the case of the interplanetary transfer problem, the
implementation of an optimal stochastic control which is based
only on an a priori knowledge of the statistics of the per-
turbing noise does not appreciably reduce the standard deviations
of the state camponents at the final time. For this reason, it
can be concluded that the control must be updated throughout the
controlling interval if the terminal state is to satisfy
approximately the terminal constraints.

The stochastic control deviation is highly dependent on the
variance and correlation time of the noise, and whether it

occurs in the thrust magnitude and/or the thrust direction

angle.

In the case of the Earth-Mars transfer, the presence of noise

in the thrust angle increases the expected value of the transfer
time, while the presence of noise in the thrust magnitude slightly

decreases the expected value of the transfer time.
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The results, presented in Chapter 5, of updating the control
program by the use of observation values made available to the controller
during the controlling interval are summarized in the following state-

ments:

1. The corrective control program based on the observed values
of range-rate measurements appears to guide a simulated tra-
jectory in such a manner that the terminal constraints are
satisfied reasonably. However, if the control is not
corrected early in the controlling interval, then the control
corrections required late in the interval become very large.

2. The results indicate that, in the case of highly auto-
correlated noise, there may be considerable advantage in
computing the conditional mean of the perturbing noise as

well as the conditional means of the state.

Unique Contributions of the Investigation

Some of the aspects of this study which are different from previous
work in this area, are listed below.

1. The consideration of a nonlinear dynamic system perturbed
by noise which is autocorrelated in time is an important step
toward finding statistical models which accurately represent
physical phenomena. Previous studies have mainly been
concerned with systems perturbed by uncorrelated, or "white"
noise. The white noise assumption may be an adequate
approximation for representing the statistical properties of

some external disturbances, but it is doubtful if it is




adequate for representing perturbing effects, such as
electrical or mechanical malfunctions, in the controls of
é dynamic system.

The expansion technique described in Chapter 3, which was
used to derive differential equations for the mean state
deviations from the deterministic trajectory when the
dynamic system is subjected to perturbing noise, is, to
the author's knowledge, original in this study. The
inclusion of the nonlinear (quadratic) terms in the investi-
gation which deals with continuously occurring noise has
not been considered heretofore.

To the author's knowledge, this is the first work in which
the stochastic calculus of variations has been applied

to a variable final time problem, with constraints imposed
on the statistics of the state at the initial and final
times. Furthemmore, the expansion technique described in
Chapter 4, which was used for finding approximate equations
for the necessary conditions of the variational problem,

is an original development.

The procedure described in Chapter 5 for finding conditional
means by an expansion about a deterministic value is new.
The concept of computing the conditional mean of the per-

turbing noise as well as the conditional means of the state

deviations, in order to compute an optimal corrective control,

is original in this study.
The numerical results obtained in the simulated study of the

interplanetary space guidance problem are the first to be
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presented for continuously occurring noise.

Recommendations for Further Study

It is recommended that the study be extended to the following

areas:

1.

The effects of different types of noise on nonlinear

dynamic systems should be investigated. In particular, the
studies should include the analysis of random external

effects and unknown model parameters.

The sensitivity of the control procedure to different types
of observations should be investigated. In particular, the
problem of implementing continuous control program corrections
on the basis of information obtained from continuous observations .
should be considered. Internal measurements of the perturbing
noise itself could also be considered.

Different approaches to the entire problem of optimal
stochastic control should be studied. The dynamic programming
method is an alternate approach which appears promising. If
the joint probability density function of the system state
could be easily computed, other statistical performance

indices for optimality could be considered.
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APPENDIX A
THE CALCULUS OF VARIATIONS APPLIED TO
OPTIMAL DETERMINISTIC CONTROL

The problem considered in the theory of optimal detemministic
control is that of finding a set of admissible controls, ui(t) ’
i=1, ..., m, which govern a controllable dynamic system whose

differential equations of motion are

ii = f;(x,u,t) i=1,...n (A.1)

in such a manner that

te
Iful] = ffnﬁ(x,u,t) dt (A.2)

t

0
is an extremum. For a control to be admissible, it must lead to a state
history X, (t) which satisfies the following initial and terminal

constraints
x;(tg) = X9
xi(tf) = X (A.3)

When the calculus of variations is applied to the problem of optimal
control, the Equation (A.1) is adjoined to the functional given in
Equation (A.2) with time dependent Lagrange multipliers pi(t), and

the initial and teminal constraints given in Equation (A.3) are
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adjoined to the functional with constants u i and v i+ Hence the
extremal value of I[u] is found by extremizing the augmented
integral J[u], where

J [u] = \)i (X (tf) -xif) + ui (xl (to) ‘xio) +

t
f
ffnﬂ_ (x,u,t) + Py (ii-fi) dt (A.4)

)

The generalized Hamiltonian associated with the variational problem

is commonly defined as

H(x,u,p,t) = pifi - fn+1 (A.5)

and the functional to be extremized can be written

Ju] = "i(xi (tf) -xif) + ui(xi _(to) 'xiO)

te
+ f piii -Hdt (A.6)

t
0
It is now assumed that the optimal control and the resulting

optimal trajectory are denoted by

® ] ] ® ® ®
ui (t)’ xi (1), tf ’ pi (v), ui ’ Vi

where
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- _ 3 ®

xi = fi(x »u ’t)
]

x; (&) = x5

% *®
x; (b ) = Xgp (A.7)

The introduction of the p;'s enables one to treat the

x;'s and u;’'s independently. Let the solution
Uir Xi» Pis tes Vs oy

be an arbitrary trajectory neighboring the optimal solution. This
neighboring solution can be expressed in terms of the optimal

solution by the following relations

® %

Xi = Xi + € Gxi tf = tf + € th
% Ps s
. = Uu. ) . o= oy, o+ .
bt u; +edu 1 1 € %%
% P 8
P; = P; *+esp; vi = v te 694 (A.8)

where 8x3, Su,, and §p;, are arbitrary independent functions of
time, and vy, Su;, and §te, are arbitrary independent constants.
€ 1s a small parameter. The functional J[u] is now seen to be a
function of the parameter ¢ for any set of functions 6xi, cui,
P;» 1y, vy and Ste. The necessary condition for optimality of

*
the control u, (t) is



gl =0 (A.9)

By carrying out the differentiation with respect to
Equation (A.6), the following expression is obtained

dx. (tf)
e=0 = Vi Tde

dx. (to)

dJ +
e=0 51 de

de

+

e=0

dvi dy.
Te|e=0 X3(tg)-x3¢) + e=0 (X3(tg)=x30) +
tf .
it e=0 + i de |e=0 +
t
il o T TN g
de |e=0 1 x 'd'— e=0 ~ €=0 pi e=0
(A.10)

It will be convenient to express Equation (A.10) in temms of the
arbitrary functions defined in Equations (A.8). By taking the
derivatives of Equations (A.8) with respect to e, the following

identities can be derived:

dxl dul
T le=0 = %4 T le=0 =
dui dvi
de |e=0 * suy T Je=0 = Vi
dp. dt
1 = §6p. f = §t
T |e=0 P T le=0 £ (A.11)
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Now consider the first of Equations (A.8) evaluated at t £

*® & ® %®
xi(tf) = X5 (tf) + ¢ 6xi(tf) (A.12)

The quantity X, (t f) can be approximated by the following

expression
® . ® ®

If Equation (A.12) is substituted into Equation (A.13), the follow-

ing expression for X, (t f) is obtained
* % * . ')
xi(tf) = X (tf ) + e[&xi(tf) + xi(tf) th] (A.14)

By taking the derivative of Equation (A.14) with respect to e, the

following relation is derived,

dxi(tf) % . %

If Equations (A.11) and (A.15) are substituted into the expression
given in Equation (A.10), and the first term under the integral is

integrated by parts, then the following expression is obtained
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[Vi"’ pi(tf)][ﬁxi(tf)ﬂ'(idtf] + [ui'Pi(to)] Gxi(to) +

Gvi(xi(tf)-xif) + 5ui(xi(t0) -xio) - H(tf) St -

te
(x-Hp.)Gpi + (pi-'-Hx.)sxi** Hu. su; dt (A.16)
i i i
to
where
_ d4J
8J = el e=0 (A.17)

By the fundamental lemma of the calculus of variations, the arbitrary
nature of the terms 6x;, 8u;, é&p;, Sug, 6v;, and Ste,. imply that

their coefficients vanish identically. Thus the conditions necessary

* * * * ] * .
for the set Xj oW 5Py s My 5V, te, to be an extremal solution
are

xi'Hp- = 0 (A.18)
i
ps+ = 0 (A.19)
H, =0 (A.20)
i
at all points of time in the controlling interval tpxststg,
xi(to) = X (A.21)
Pi(tg) = w4 (A.22)

ped
(7))



at the initial time tp» and

x;(t) = Xip (A.23)
pi(td = -v, (A.24)
Hit = 0 (A.25)

at the terminal time te.

Equation (A.20) can be used to eliminate u, (t) from Equation
(A.18) and (A.19). The 2n equations, i.e., Equations (A.18) and
(A.19), then form a two point boundary value problem with 2n+1
split end conditions, i.e., Equations (A.21) and (A.22), at tys
and Equations (A.23), (A.24), and (A.25) at te. The problem can be
solved for the values of the 2n unknown constants My and Vi,
and for the final time te, by ane of several existing numerical
methods.

In applying the calculus of variations technique the Earth-
Mars transfer problem, the transfer time, i.e.,

ts
Ifu] = f 1dt (A. 26)

K

is minimized subject to the differential equations of motion

o
]

H|<
'

o
+
o
m-
3

= __Y_Uf + a cosa
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e

(A.27)

De
]
Hi<

. T
T ey

The conditions at the final time are
u(tf) = 0

v(tf) = VM (velocity of Mars)

r(tf) = RM (radius of Martian Orbit)
(A.28)

and the conditions at the initial time are

u(to) = 0

V(tO) = VE (velocity of Earth

r(to) = R‘E (radius of Earth's orbit)
6(ty) = 0 (A.29)

8 is allowed to be unconstrained at the final time, hence the launch

time will be selected, after the final solution is determined, in order

to assure proper rendezvous configuration at Mars.
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The integral to be extremized is
Jlal = vy(u(td) + vy(v(t) V) + vz(r(t)R) +
‘Jl(u(to)) + uz(v(to) "VE) + u3(r(t0)'RE) + u4(9(t0)) +
tf 2
f1+p1(ﬁ-¥—-§2 - a sina) +p2(\°r+}u—‘£- a cosa)
t
0

+ pg(r-u) + py(8- 3 at (A.30)

The resulting necessary conditions are

. PV

P1 = ¥ " P3

. 2p)Vv pu Py

LA R

o = D v2 ) Zup; puwv . PV

3 1 ;2' r3 r2 I,2

134 =0 (A.31)
p1COSu-pZSina = 0 (A.32)

and Equations (A.27), in the controlling interval tp2t> te,

pl (to) = ul
1) (to)? = u 5
p3 (to) = 3
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(Y4

and Equations (A.29), at the initial time ty» and

Pt = -vg
Pty = -v,
P3(ty = -3
Pty = 0
V2 u . uv v
PG - ;z“ a sina)+p,(-—+ a CC>sm)+p3u+1:4;t = 1 (A.34)

f

and Equations (A.28), at the terminal time tf.

Equation (A.32) leads to the following relations

. 151 P,
sine = ———e COSa = ——_—_—2—"2' (A.35)
+/p12+p22 +v/p1 ’+p2

Note: An analysis of the second variation of the functional J [u]
leads to the selection of the plus signs for the radicals in
Equations (A.35).

The necessary condition then reduce to the set of equations

2 P
s _ V' _u 1
U= s Z7ra —
/p1+p2
ve-F+a P2
, 2. 2
/pl+p2
T =

e
]
i< &
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. PV
Py = 7w P
2p,v p,u p
. 1 2 4
P27 "'y v
5 - v Zupy PW BV
3 17273 2 2
Py = 0 (A.36)
T
with a = — —
mo-m(t-to)

at all points of time in the interval tg<tstg, Equations (A.29)
and (A.33) at the initial time ty» and Equations (A.28) and (A.34)
at the terminal time t g- Figure A.1 illustrates the time histories
of the quantities u, v, r, 6, Py» P2» Pg and Py for the con-
verged optimal solution. Figure A.2 illustrates the time history of

the optimal control angle a(t).
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Time Histories for the Earth-Mars Transfer Problem
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APPENDIX B
MATRIX FORMULATION OF THE
EQUATIONS FOR THE EARTH-MARS
TRANSFER PROBLEM

The terms in the equatins for the Earth-Mars transfer problem are

listed below in matrix notation. The notation is defined by the

following example.

If A,; 1is an nm dimensional quantity, i.e., i=1, ..., n,

J
j=1,..., m, then the components of Aij can be listed in the follow-
ing manner B ]
All Alz . L ] L] Alm
M1 Ay

[ -1 ;

Ay - - - Ap

%
i
M
o o4 < ¢
b
Rl
"
| pa—
RN
(I
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o o o O
{ |
| 3
= @
3
& 5 C Y o G w
n 7] [ S (L) (= + W_r o V—Zr
] S ) L | )
(o]
+ s v_Zr
] n \
o T
] bl o )
~ n..l &1 >
v_r w_r 3 bl Z_r Sl O ik
[ _ '
n ( -1
N o
) ) o 5= =~ o
— | !
%, J L ~
e 2 2 & 2 o =
L |
L J
" (] "
~— | Ea—— |
—-1— = uJ
» od .
© [+ 4 4,
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0 0 0 0
2 - 2v
0 = 0
[fuxix.] = T ) 2
J 0 _2v v 6y 0
;2' I )
0 0 0 0
1 v a
0 - -f ? 0
1 u
. _I°r 0 e 0
vxixj
v _2vu 0
” = v
| 0 0 0 0_
0 0 0 0
_ 0 0 0 0
e
1]
0 0 0 0
0 0 0 0




<
g
pede
Le]
l e l
[}

E‘"’a
[
=
[

N
=
I

P —

sV
M.. | =
[ 13] E 6T

36

L

COSa

0 0
1
0 -
=
1 2v
= ”
0 0
cosa 0

0
1]

w] -
[ 5p3
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0
0
0
0
-sina
-acosa
0 0
0 0
[ su |
sv
n.n
6T [a “.-J
(Y]
dpl
sz

Sp 4




X;p

2

i

placosa-pzasina

. vu v
pl(zf - 1;—2- + asina) + pz(- <*ta cosa) + P3u + Py ¢
P3
Pt Py
T * T
Zp . pyur Pyv
= e 7
P2 P2 0
T ©
ZP]_ uPz'P4‘2VP1 0
T T |
2
Up,-py-2vp;  2(pV +p,v-p,vu) ) bup, 0
r* r e
0 0 -0

187




H =

|
o™ !
g
I—
[

H =

—
Q:r:
W
-
(N
]

[:pl cosa - p, sina

[a cosa , -a sin{]

cosa -sina

-a sina -a cosa
0 0
0 0
P;
0 7
T
0 0
0 0
0 0
1% - 2p;
? 7
0 0

-plsina - p,cosa

-plasina -pzacosa:l
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0 P, 2p2v
2 | 1
Py - Zpl 2 (2P1V+p4 'qu)
}7 = x5
[
2
2p2v 2( 2p1V+p 4 -p3u) 24up1 6 (plv +p 4v-p2uv)
r3 r3 r5 rtr
0 0 0
0 0 0 0
0 0 0 0
H
[ exixj]
0 0 0 0
0 0 0 0
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0 0 0 0
1
0 -2 0 0
H =
ity v
[ uxlp’:l 0 = 0 0
T
0 0 0 0 |
B 1
0 = 0 0
2z 0 0 0
" T
H - .
VX.P. 2 u )
el | 2 z 0 2
T
0 0 0 0
0 5 0
2v u 0 . LZ'
2 =) r
H = »
[mixj] 2v% 6y 2uv 0 2l
3 7 ;'3_ -
r
0 0 0 0




191

' ¢= l
“H
]
I
o o
(=) o
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(=) (=

Su

Sv

%9

Gpl

Gps

6p4

Chg;zter S

u[r-Rcos(a-m(t-tO))]ﬂR(% ~w)sin(e-w(t-t,))
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T-R cos(e-w(t—to))

gu =
e}
o R 51n(e—w(t-t0)) _ Rsin(y)
8y b o
. Rv . .

_ wRsin(y)(F -w) + - sin(y) o8,
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APPENDIX C

NUMERICAL CONSTANTS FOR THE EARTH-MARS TRANSFER PROBLEM

Numerical Constants in MKS System of Units

Orbital Radius of Earth, R = 1.4959870 x
Velocity of Earth, Vg = 2.9784901 x
Orbital Radius of Mars, RM = 2.2794040 x
Velocity of Mars, VM = 2.4129561 x
Angular Velocity of Earth, = 1.9909866 x
Gravitational Constant of Sun, u = 1.3271504 x

Initial Spacecraft Mass, m, = 6.7978852 x
Mass Flow Rate, m = 1.0123858 x
Thrust, T , = 4.,0312370

Nomalization Scheme

Unit of Length = 1 Rg, 1 AU
Unit of Velocity = 1V
Unit of Mass = 1 m,

Normalized Values g the Numerical Constants

Initial Spacecraft Radius = 1.0
Initial Spacecraft Velocity = 1.0
Terminal Spacecraft Radius = 1.5236790
Terminal Spacecraft Velocity = 0.81012728
Angular Velocity of Earth = 1.0
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11
10 Meters

104 Meters/second

11
10 Meters

104 Meters/second

-7

10 ° Radians/second

20 2

10 Meters:"/second
10° Kilograms
107° Kilograms/second

Newtons




Normalized Values of the Numerical
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Constants - (continued)

Gravitational Constant of Sun
Initial Spacecraft Mass
Mass Flow Rate

Thrust

1.0

1.0
= 0.074800391

0.14012969



APPENDIX D
A THEOREM FROM PROBABILITY THEORY

Consider the set of random variables x, Y1» Y2r Y35 +oos Wy
that are distributed according to the joint probability density
function f(x,yl, Ys cees yN). The conditional expectation of the
product F(yl)x, where F(yl) is some function of Y1» given
Y25 Y35 ooes ¥y is defined as follows

E[F(yl)x l Y25 eee» YN] =f fp(yl)x f(xsyl Ygseees YN) dXdyl
- (D.1)

where f(x, Y1 ! Yo o0 YN is the joint conditional probability
density function of x, Y1 given Y25 «ees YN- By the definition of
the conditional density function (see Ref. 11), the following relation

can be written

FX¥15Y 950 0oYp)
F¥2sY3sees¥y) (D.2)

FXyy | Ygseeeony) =

Equation (D.2)can be written in the form

f(x’Y1’y2"‘°QYN) f(y1’°°°’YN)
Fiyyseeesyy) Fype ¥y

FXyy |Yg0eesYy) (D.3)
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and from the definition of the conditional density function, Equation

(D.3) reduces to the following relation

FOGYY | YoseeeV) = FEX|Ypaeeesy) FOq|Ygse--yy) (D4

By substituting Equation (D.4) into the integral in Equation (D.1),

the following expression is obtained

E[F(YI)XIYZ,-.-,YN] =! fF(yl)x f(X|y1,---,yN)f(y1 Ygsee oY) dydx
- (D.5)

Rearranging Equation (D.5) leads to the following relation

E[F(yl)x|y2,...,yN] - f F(yl)[ f Xf(X|y1---.yN)dX] PO |gsen ey

o ol (D.6)

By the definition of the expected value operation Equation (D.6) reduces

to the following equation

Y1seeeo¥yN) Iyz’“"’)’N] (0.7)

E [F(yl)x Iyz, ces ,yN] = E [F(YI)E(X

In the notation of Chapter 5, Equation (D.7) can be generalized to

the following form
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E[F(cy(tk))sxi(tk) | vt Yt -ons y(tl)] -

EE’(Gy(tk))E(Gxi(tk) Iy(tk) Y (e _1)5--45¥(%)) | y(ty_ 1)y (o), .y(tl):l

(D.8)



APPENDIX E
THE DIFFERENTIAL EQUATION FOR THE GENERALIZED COVARIANCE

Consider Equations (5.17) and (5.19) from Chapter 5. The
equations can be written as follows

X; = fix Jx * fiu (Gu ny) + Zfixjkajk+

fiu. uk(tSu su, +éu. nk+n36u +R. k) 3 Jukgsijauk-rhjk) (E.1)

su, 6X.+h,
1kak JXk uk( uk X+ k)

+ ( siiaukﬂx iad T (E.2)

Juy

Now consider the covariance of the state Pij , which is defined by the

following expression

Pij = Mij - Gxiaxj (E.3)

In view of Equations (E.1) and (E.2), the derivative of P.. with

1]
respect to time can be written in the following manner
1j = MIJ-Gx GxJ-Gx 6x = f‘ M
+ Mik fjxk + fiuk(aukdxj+hjk) (E.4)
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+ (6§i6uk+hik) fj v - si‘i[ fjxk‘s;k + fjuk(cukﬁk)]

+[f ixkcik +f iuk(‘suk"‘ﬂk)] 6xj
In view of Equation (E.3), Equation (E.4) reduces to the following

expression

Pi5 % TigPik * Pik Ty ¢ Fi Gy G0 ¢ Byeskim) £, (E-5)

In a manner similar to the manner in which Equation (E.5) was derived,
Equations (5.18) and (5.20) may be used to derive the following

expression

d ) _ _
dt Wy576%;9P5) = fi Miej0%,805) - (Ny6X;6py) f ix

+ Pikakxj * Fiu, E5x0Psm0 - (yp8%;m) ijuk (E.6)

In a similar manner the following equations can be derived from

Equations (5.21) and (5.22).
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d _ _ —-—
dar (yymoxng) = Fix (g=o%03) *+ Fiy Ry i)

+ (hik'ﬁxiﬂk) Bkj (E . 7)

d —— — —
a (£3570p3n5) = - A P ~0%"3) - e B ")

By recalling the definition of the generalized covariance Pij’ i.e.,

Equation (5.38), the set of Equations (E.4), (E.5), (E.6), (E.7), and

(E.8) can be generalized to the following equation

Pis = Tifij * Piklik (E.9)

; isa (2n+m)? dimensional quantity which is defined by the

following relations

where ri

rij = fixj , i=1, ..., n
j=1, ..., n

rij = 0 R 1=1, s, N
j=n+l, ..., 2n

rlJ = fiuj-Zn ’ i=1, ..., n

2n+l, ..., 2n+m

(SN
"



I’ij

ij

rij

rij

ij

ij

= 8

i-2n j-2n

ntl, ..., 2n
1, ..., n
n+l, ..., 2n

n+l, ..., 2n

n+l, ..., 2n
2n+l, ..., 2n+m
2n+l, ..., 2n+m
1, ..., n

2n+l, ..., 2n+m
n+l, ..., 2n
2n+l, ..., 2n+m

2n+l, ..., 2n+m

(E.10)
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